
Apple* Human Interface Guidelines:

The Apple Desktop InterfaceForany

Macintosh
9
or

Apple II computer

Digitized by the Internet Archive

in 2012

http://archive.org/details/applehumaninterfOOappl

Apple,, Human Interface Guidelines:

The Apple® Desktop Interface

Addison Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York Don Mills,

Ontario Wokingham, England Amsterdam Bonn Sydney Singapore

Tokyo Madrid Sanjustn

* APPLE COMPUTER, INC.

Copyright © 1987 by Apple

Computer, Inc.

All rights reserved. No part of

this publication may be repro-

duced, stored in a retrieval

system, or transmitted, in any

form or by any means, mechan-

ical, electronic, photocopying,

recording, or otherwise, without

prior written permission of

Apple Computer, Inc. Printed in

the United States of America.

© Apple Computer, Inc., 1986

20525 Mariani Avenue
Cupertino, California 95014

(408) 996-1010

The Apple Desktop Interface is

proprietary to Apple Computer
and is protected by both literary

and audio-visual copyrights and
patents. Unauthorized use or

copying of the interface is not

permitted and is a violation of

Apple's intellectual property

rights.

Apple, the Apple logo, and
LaserWriter are registered

trademarks of Apple Computer,
Inc.

Macintosh is a trademark of

Apple Computer, Inc.

ITC Avant Garde Gothic, ITC

Garamond, and ITC Zapf
Dingbats are registered

trademarks of International

Typeface Corporation.

Microsoft is a registered trade-

mark of Microsoft Corporation.

POSTSCRIPT is a trademark of

Adobe Systems Incorporated.

Simultaneously published in the

United States and Canada.

ISBN 0-201-17753-6

DEFGHIJ-DO-89
Fourth Printing, December 1988

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed

this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD "AS IS," AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the

possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU-
SIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is

authorized to make any modifica-

tion, extension, or addition to this

warranty.

Some states do not allow the exclu-

sion or limitation of implied warran-

ties or liability for incidental or

consequential damages, so the

above limitation or exclusion may
not apply to you. This warranty

gives you specific legal rights, and
you may also have other rights

which vary from state to state.

Contents

Figures and tables ix

Foreword xi

Chapter 1 Philosophy 1

A view of the user 2

General design principles 3

Metaphors from the real world 3

Direct manipulation 4

See-and-point (instead of remember-and-type)

Consistency 6

WYSIWYG (what you see is what you get) 6

User control 7

Feedback and dialog 7

Forgiveness 8

Perceived stability 8

Aesthetic integrity 9

Principles of graphic communication 9

Visual consistency 10

Simplicity 10

Clarity 11

A strategy for programming 1

1

Modelessness 12

The event loop 13

Reversible actions 13

The screen 14

Plain language 14

User testing 15

The design process 15

Test subjects 1

5

Procedures 15

Designing for disabled people 16

Vision disabilities 16

Hearing disabilities 17

Other disabilities 17

Chapter 2 Elements of the Desktop Interface 19

Screen elements 20

The desktop 20

Windows 22

Window manipulation 23

Dialog boxes, alert boxes, and controls 23

Menus 24

The menu bar 25

Menu items 25

Human-computer interaction 27

Pointing 28

Mouse actions 28

Pointers 28

Selecting 29

Keyboard actions 30

Color 30

What is color? 31

Standard uses of color 31

Color coding 31

General principles of color design 32

Design in black and white 32

Limit color use 33

Contrast and discrimination 33

Colors on grays 33

Colored text 34

Beware of blue 34

Small objects 34

Specific recommendations 34

Backgrounds 34

Outlines 34

Highlighting and selection 35

Menus 35

Windows 35

Dialog and alert boxes 35

Pointers 35

Sound 36

When to use sound 36

Getting attention 36

Alerts 36

Modes 36

Contents

General guidelines 37

Restraint 37

Redundancy 37

Unobtrusiveness 37

Significant differences 37

User control 37

Summary 38

Chapter 3 Specifications 39

Introduction 40

The desktop 40

Windows 42

Document windows 43

Opening and closing windows 43

Multiple windows 44

The active window 45

Moving a window 45

Changing the si2e of a window 46

Window zooming 46

Scroll bars 49

Scrolling with the scroll arrows 50

Scrolling by windowful 50

Scrolling by dragging the scroll box 51

Proportional scroll boxes 51

Automatic scrolling 52

Splitting a window 53

Panels 55

Controls, dialog boxes, and alerts 55

Controls 56

Buttons 56

Check boxes and radio buttons 56

Dials 57

Dialog boxes 58

Alerts 60

Beeps 60

Alert boxes 6l

Desk accessories 63

Menus 65

The menu bar 65

Menu items 66

Choosing a menu item 66

Contents

Appearance of menu items 67

Grouping operations in menus 67

Toggled menu items 68

Special visual features 69

Scrolling menus 71

Keyboard equivalents for menu items 72

Interrupting an operation 73

The standard menus 74

The Apple menu 74

The File menu 75

New 76

Open 76

Close 77

Save 78

Save As 78

Revert to Saved 79

Page Setup 79

Print 80

Quit 80

The Edit menu 80

The Clipboard 81

Undo 82

Cut 83

Copy 83

Paste 83

Clear 83

Select All 84

Show Clipboard 84

Font-related menus 84

Font menu 84

FontSize menu 85

Style menu 86

Special menu types 87

Hierarchical menus 87

Pop-up menus 88

Palettes 90

Tear-off menus 91

The pointing device 93

Cursors, pointers, and insertion points 93

Mouse actions 95

Clicking 95

Double-clicking 96

Pressing 96

Dragging 97

Mouse-ahead 97

vi Contents

The keyboard 98

Character keys 98

Enter 98

Tab 98

Return 99

Backspace (or Delete) 99

Clear 99

Escape 99

Modifier keys 100

Shift 100

Caps Lock 100

Option 100

The Apple (or Command) key 101

The Control key 101

Type-ahead and auto-repeat 101

International keyboards 102

Arrow keys 102

Appropriate uses for the arrow keys 102

Moving the insertion point 103

Moving the insertion point in empty documents 103

Using modifier keys with arrow keys 104

Function keys 105

Selecting 106

Types of objects 106

Selection in general 108

Selection by clicking 108

Range selection 109

Extending a selection 109

Making a discontinuous selection 110

Selection by data type 111

Selections in text 111

Making a selection with arrow keys 113

Undoing a text selection 114

Selections in graphics 115

Selections in arrays and tables 116

Editing text 1 18

Inserting text 118

Backspacing 118

Replacing text 118

Intelligent cut and paste 119

Editing fields 120

Contents vli

Appendix A The Roots of the Apple Desktop Interface 123

Appendix B Software for International Markets 125

General guidelines 125

Macintosh localization 126

Text 127

Line spacing 127

Font selection 127

Uppercase and lowercase 127

Menus 128

The International Utilities Package 128

The Script Manager 128

Dialog and alert boxes 129

Appendix C Recommended Reading 131

Index 137

viil Contents

Figures and tables

Chapter 2 Elements of the Desktop Interface 19

Figure 2-1 The Finder desktop 21

Figure 2-2 Standard document window 22

Figure 2-3 Dialog box 23

Figure 2-4 Alert box 24

Figure 2-5 Menu bar 25

Figure 2-6 Menu 26

Figure 2-7 The Apple menu 26

Figure 2-8 File and Edit menus 27

Table 2-1 Pointers 29

Chapter 3 Specifications 39

Figure 3-1 The Finder desktop 41

Figure 3-2 Six kinds of Finder icons 41

Figure 3-3 Standard document window 43

Figure 3-4 Multiple windows 44

Figure 3-5 Window in standard state 47

Figure 3-6 Window in user-selected state 47

Figure 3-7 Vertical scroll bar 49

Figure 3-8 Types of split windows 53

Figure 3-9 Scrolling a split window 54

Figure 3-10 Buttons 56

Figure 3-11 Check boxes and radio buttons 57

Figure 3-12 Dials 57

Figure 3-13 A modal dialog box 59

Figure 3-14 A modeless dialog box 59

Figure 3-15 A typical alert box 6l

Figure 3-16 Alert box icons 6l

Figure 3-17 Some desk accessories 63

Figure 3-18 Menu bar 65

Figure 3-19 Menu 65

Figure 3-20 View menu 68

Figure 3-21 Toggled operations 68

Figure 3-22 Visual features of menus 70

Figure 3-23 A pull-down palette 70

Figure 3-24 Scrolling menu indicator at bottom of menu 71

Figure 3-25 Scrolling menu indicator at top of menu 71

Contents

Figure 3-26 The Apple menu 74

Figure 3-27 Some desk accessories 75

Figure 3-28 Standard File menu 75

Figure 3-29 MFS Open dialog box 76

Figure 3-30 HFS Open dialog box 76

Figure 3-31 Standard Close dialog box 77

Figure 3-32 A Save As dialog box 78

Figure 3-33 A Revert to Saved dialog box 79

Figure 3-34 A Page Setup dialog box 79

Figure 3-35 A Print dialog box 80

Figure 3-36 Standard Edit menu 81

Figure 3-37 Undo and Redo in an Edit menu 82

Figure 3-38 Font menu with some common Macintosh fonts 85

Figure 3-39 FontSize menu with standard font sizes 85

Figure 3-40 Standard Style menu 86

Figure 3-41 Main menu before and after a submenu appears 87

Figure 3-42 Dragging diagonally to a submenu item 88

Figure 3-43 A dialog box with pop-up menus 89

Figure 3-44 A pop-up menu as the pointer is dragged

through it 89

Figure 3-45 Two palettes 90

Figure 3-46 Graphic pull-down menu 91

Figure 3-47 Torn-off menu 92

Figure 3-48 Torn-off menu also available in menu bar 92

Figure 3-49 The progress dial in AppleLink® 95

Figure 3-50 Dragging with the mouse 97

Figure 3-51 Macintosh Plus arrow keys 102

Figure 3-52 Three ways of structuring information 107

Figure 3-53 Selection methods 108

Figure 3-54 Expanding and shrinking a text selection 109

Figure 3-55 Discontinuous selection within an array 110

Figure 3-56 Text selections 111

Figure 3-57 Selecting with Shift and arrow keys 114

Figure 3-58 Selecting with Option-Shift and arrow keys 114

Figure 3-59 Graphic selection in MacDraw 115

Figure 3-60 Graphic selection in MacPaint 115

Figure 3-6l Field selection in an array 116

Figure 3-62 Column selection in an array 117

Figure 3-63 Range selection in an array 1 17

Figure 3-64 Discontinuous selection in an array 117

Figure 3-65 Intelligent cut and paste 120

Table 3-1 Pointers 94

Contents

Foreword

From its inception, Apple Computer has had a vision: to bring the power and

versatility of computers to ordinary people. The Desktop Interface, introduced with

the Lisa® and further developed on the Macintosh™, represents a quantum leap

toward that goal. This book presents the rationale behind the Apple Desktop Interface

and provides guidelines for software developers who want their products to be

consistent with the Desktop Interface. Various Apple® hardware systems can

accommodate this interface in varying degrees. So far, the Macintosh is the most

mature implementation of the interface, and we rely on it for the examples in this

book. You'll understand this book better if you've used one or two standard Macintosh

applications and read a Macintosh owner's guide.

The best time to familiarize yourself with the Desktop Interface is before beginning to

design an application. Good application design happens when the developer has

absorbed the spirit as well as the details of the Desktop Interface. Human interface

design should come first, not last.

An interface is not merely a visual display—in fact, it's possible to have an interface

with no visual display at all. A human interface is the sum of all communication

between the computer and the user. It's what presents information to the user and

accepts information from the user. It's what actually puts the computer's power into

the user's hands.

One of the great advantages of the Desktop Interface is its consistency: a user who
learns one application already knows a good deal about other applications. For

example, Command-X and Command-V mean Cut and Paste in all standard

applications; selecting a block of text and choosing Italic from the Style menu has the

same effect in any application. This consistency makes it easier for a user to learn new
applications; it also makes it less likely that a user who follows habits learned from one

application will make a disastrous mistake when using a different one.

The Desktop Interface comprises features that are generally applicable to a variety of

applications, but not all of the features are found in every application. In fact, some
features are hypothetical because they anticipate future needs, and may not be found

in any current applications.

XI

This book will be most useful if you already have some experience with a desktop-based

Finder program and with the concepts of pointing, clicking, and dragging with the

mouse. You should also be familiar with some application programs that use windows,

pull-down menus, and a mouse—preferably one each of a word processor, a

spreadsheet or data base, and a graphics application.

Although you can find examples of most of the features described in this book by

looking at existing applications, no one program has fully implemented these

guidelines, and perhaps none ever will. Taken together, the Finder (version 5.5),

MacWrite® (version 4.5), MacPaint® (version 1.5), and MacDraw® (version 1.9)

come close to containing the full set of features as described here. Because these

applications evolved in parallel with the Human Interface Guidelines, none of them is

a perfect implementation of the guidelines: where the application differs from the

guidelines, follow the guidelines. While there are some very good applications that

deviate in significant respects from these guidelines, emulate those applications only

with good reason. If you do deviate from the guidelines, make sure that the user will not

get into trouble by following habits learned from standard applications: a

pathological example would be to change the meaning of Command-S from Save to

Shut Down-without-saving.

These guidelines are not the last word on this subject, just as the Desktop Interface is

not the last interface. New features will be found that will make the interface more

effective, and eventually new interfaces will appear. For now, these guidelines

represent the interface that Apple recommends for all computers in the Apple II and

Macintosh product lines.

You'll find detailed implementation specifications in the technical documentation for

the particular Apple computer for which you're developing software. If you haven't

already done so, you can become a registered or certified developer, which makes you
eligible for additional information. Contact Apple Developer Relations for details.

This book is a joint effort of two groups at Apple: the Human Interface Group and the

Technical Publications Group.

xll Foreword

Chapter 1

Philosophy

The Apple Desktop Interface is the result of a great deal of concern with the human part

of human-computer interaction. It has been designed explicitly to enhance the

effectiveness of people. This approach has frequently been labeled userfriendly,

though user centered is probably more appropriate. It has been thought of as the ideal

interface for beginners, though it would be more useful to think of it as good for people

in general. It has been labeled simple, though direct and effective make more sense.

And it has been described as easy to learn, though accessible would be as true.

A view of the user

Not very long ago, most users of personal computers were also programmers. In fact,

many of them were computer builders as well, because personal computers were

available only as kits. Today, most personal computers are seen as tools that magnify a

person's ability to perform all kinds of tasks that were formerly done without

computers. The Apple Desktop Interface provides a consistent and familiar computer

environment in which people can perform their many tasks. People aren't trying to

use computers—they're trying to get their jobs done.

Given this focus on people and their tasks, the Apple Desktop Interface has had to

assume a model of people, in order to suit the interface to them. People, however, are

delightfully complex and varied, which assures that a theory of human activity that

would provide a complete framework for the design of human-computer interaction is

a long way off. Such a theory would be oversimplified anyway, because computers

themselves change the way we think, feel, and behave. Computer design and human
activity must therefore evolve together. Apple believes that caring how people behave

will help computer designers provide a consistent world that a person can enter with

ease and effectiveness, even though many of the details of human activity are not

understood.

The Apple Desktop Interface is based on the assumption that people are instinctively

curious: they want to learn, and they learn best by active self-directed exploration of

their environment. People strive to master their environment: they like to have a

sense of control over what they are doing, to see and understand the results of their

own actions. People are also skilled at manipulating symbolic representations: they

love to communicate in verbal, visual, and gestural languages. Finally, people are

both imaginative and artistic when they are provided with a comfortable context; they

are most productive and effective when the environment in which they work and play is

enjoyable and challenging.

Chapter 1: Philosophy

The next section of this chapter sets forth ten human interface principles that explicitly

emphasize the views expressed above. A subsequent section describes a programming

strategy that takes these principles into account. Chapter 2 describes a specific set of

elements for a Desktop Interface that can be used consistently across a range of very

different applications. Chapter 3 provides standards and specifications for their

implementation.

General design principles

This section describes the ten fundamental principles of the Apple Desktop Interface.

Metaphors from the real world

Use concrete metaphors and make them plain, so that users have a set of
expectations to apply to computer environments.

Whenever appropriate, use audio and visual effects that support the

metaphor.

Most people now using computers don't have years of experience with several different

computer systems. What they do have is years of direct experience with their

immediate world. To take advantage of this prior experience, computer designers

frequendy use metaphors for computer processes that correspond to the everyday

world that people are comfortable with.

The desktop itself is the primary metaphor for the Apple Desktop Interface. It appears

to be a surface on which users can keep tools and documents. Yet many of the

elements of the Apple Desktop Interface don't have a clear physical counterpart. For

example, scroll bars clearly belong to the computer domain; they only loosely

resemble real scrolls. And pull-down menus aren't much like real restaurant menus,

except in providing the opportunity to make choices from alternatives.

The desktop, then, is an inviting metaphor that provides easy access to the system.

Other metaphors, especially when consistent with the desktop, can fit into the system.

Once immersed in the desktop metaphor, users can adapt readily to loose

connections with physical situations—the metaphor need not be taken to its logical

extremes.

General design principles

Direct manipulation

Users want to feel that they are In charge of the computer's activities.

People expect their physical actions to have physical results, and they want their tools

to provide feedback. For example, when character keys are pressed, users like to hear a

click as they see the corresponding characters appear on the screen. When a drawing

tool is moved, a line appears. This is true whether or not a computer is being used.

Moving a document from one folder or disk to another, or into the trash, can seem to

be a physical activity with physical feedback in the computer world as it is in the paper

world. The physical activity of moving the mouse reinforces the sense of an action with

a real result.

Users want topics of interest to be highlighted. They want to see what functions are

available at any given moment. If grave consequences might follow from any of those

functions, they want to know about them—before any damage is done. They want clues

that tell them that a particular command is being carried out, or, if it cannot be

carried out, they want to know why not and what they can do instead.

People appreciate visual effects, such as animation, that show that a requested action

is being carried out. This is why, when a window is closed, it appears to shrink into a

folder or icon. Visual effects can also add entertainment and excitement to programs

that might otherwise seem dull. Why shouldn't using a computer be fun?

See-and-point (instead of remember-and-type)

Users select actions from alternatives presented on the screen.

The general form of user actions is noun-then-verb, or "Hey, you—do this."

Users rely on recognition, not recall; they shouldn't have to remember
anything the computer already knows.

Most programmers have no trouble working with a command-line interface

that requires memorization and Boolean logic. The average user is not a
programmer.

The Apple Desktop Interface is visually and spatially oriented. The way everything

—

text, applications, documents, lines, controls—appears on the screen is consistent

and well thought out. The screen provides an environment in which people can work
effectively, taking full advantage of the power of the computer while enjoying a

sensible human environment.

Chapter 1: Philosophy

Users interact directly with the screen, choosing objects and activities they are

interested in by pointing at them. The mouse is currently the most common pointing

device, but other effective pointing devices are available.

There are two fundamental paradigms for how the Apple Desktop Interface works.

They share two basic assumptions: that users can see, on the screen, what they're

doing; and that they can point at what they see. In one paradigm, users first select an

object of interest (the noun) and then select an action (the verb) to be performed on

the object. All actions available for the selected object are listed in the menus, so that

users who are unsure of what to do next can quickly jog their memory by scanning

through them. Users can choose, at any time, any available action, without having to

remember any particular command or name. This paradigm requires only

recognition, rather than recall, of the desired activities.

In the second paradigm, the user drags an object (the noun) onto some other object

which has an action (the verb) associated with it. In the Finder, for example, the user

can drag icons into the trash can, into folders, or into disks. No action is chosen from

the menus, but it's obvious what happens to the object that is sent to another object.

For example, an object sent to the trash can is discarded, and the document sent to a

disk icon is copied to that disk. In this variant of the Desktop Interface, users do have to

remember what an object such as the trash can is for, so it is especially important that

objects look like what they do. If the trash can didn't look like the place to discard

something, or we didn't know from daily experience that folders contain documents,

such an interface wouldn't work. However, when this type of interface is well thought

out, it can be easier to learn than menu commands.

Command-line interfaces, on the other hand, require the user to remember a

command and type it into the computer. This kind of interface makes considerable

demands on the user's memory—especially when the commands are complex or

cryptic. Such an interface is especially galling to the new or infrequent user, but it

distracts all users from their task and focuses attention instead on the computer's

needs.

There are, however, some advantages to the remember-and-type approach.

Sometimes, when the user is completely certain of what action is desired, a simple

keystroke command may be the fastest way to achieve it. For this reason, some desktop

applications include keyboard equivalents for some menu activities. Keyboard
equivalents are a logical extension of the Apple Desktop Interface, fine-tuning it for

particular situations. It is essential, however, that keyboard equivalents offer an

alternative to the see-and-point approach—not a substitute for it. Users who are new
to a particular application, or who are looking for potential actions in a confused

moment, must always have the option of finding a desired object or action on the

screen.

General design principles

Consistency

Effective applications are both consistent within themselves and consistent

with one another.

Having learned, in one application, a general set of skills, the user can transfer those

skills to other applications. By using the standard elements of the Apple Desktop

Interface, you ensure consistency within your application and you benefit from

consistency across applications.

Within an application, there should always be one coherent way for the user to

implement actions. Though some shortcuts may be provided, users should always be

able to rely on familiar and straightforward ways to get things done.

The standard elements of the Apple Desktop Interface ensure consistency, ease of

learning, and familiarity across applications. This benefits the typical user, who
usually divides working time among several applications, and it benefits every software

developer because the user learning how to use a new application builds on prior

experiences with the same elements in other applications. This sometimes means that

a programmer's new solution that precisely matches a particular situation should be

set aside in favor of a slightly less effective but more commonly used solution. In most

cases, consistency should be valued above idiosyncratic cleverness.

WYSIWYG (what you see is what you get)

There should be no secrets from the user, no abstract commands that only
promise future results.

There should be no significant difference between what the user sees on the

screen and what eventually gets printed.

A very important use of computers is the processing and printing of text and graphics.

In some systems, the computer is an intermediary: the user manipulates a range of

computer commands to indicate what is desired, and the computer passes these

commands along to a printer. This kind of system keeps the user unnecessarily distant

from the final document. The user should be in charge of both the content and the

formatting (spatial layout as well as font choices) of the document. The computer

should quickly and directly display the result of the user's choices, so the user doesn't

have to wait for a printout or make mental calculations of how the screen version will

be translated onto paper.

Chapter 1: Philosophy

The principle behind this approach is known as what you see is what you get

(abbreviated WYSIWYG, pronounced wizzy-wig). This approach is highly consistent

with the direct manipulation aspect of the Apple Desktop Interface. For example,

when a user uses the Finder to copy a document from one disk to another, the user

"sees" a copy of the document move to the new disk and can trust that the document is

now found on both disks. WYSrWYG is also in the spirit of using a computer as a

thinking tool and as a production tool.

User control

The user, not the computer, Initiates and controls all actions.

People learn best when they're actively engaged. Too often, however, the computer

acts and the user merely reacts within a limited set of options. In other instances, the

computer "takes care" of the user, offering only those alternatives that are judged

"good" for the user or that "protect" the user from detailed deliberations.

On the surface, the concept of computer as protector may seem quite appealing, but

this approach puts the computer, rather than the user, in the driving role—something

quite at odds with the basic philosophy of the Apple Desktop Interface.

In the Apple Desktop Interface, if the user attempts something risky, the computer

provides a warning, but allows the action to proceed if the user confirms that this is

what he wants. This approach "protects" the beginner but allows the user to remain in

control.

Feedback and dialog

Keep the user informed.

Provide immediate feedback.

User activities should be simple at any moment, though they may be
complex taken together.

To be in charge, the user must be informed. When, for example, the user initiates an

operation, immediate feedback confirms that the operation is being carried out, and
(eventually) that it's finished. When the application isn't responding to user input

because it's processing a different task, the user must be informed of when to expect

delays, why, and for how long.

The user must also be kept informed of the progress of an operation: for example, the

reason an operation can't be completed at a certain time as well as the fact that it can't.

This communication should be brief, direct, and expressed in the user's vocabulary

rather than the programmer's.

General design principles

Forgiveness

Users make mistakes; forgive them.

The user's actions are generally reversible—let users know about any that

aren't.

Even though users like to have full documentation with their software, they don't like to

read manuals (do you?). They would rather figure out how something works in the

same way they learned to do things when they were children: by exploration, with lots

of action and lots of feedback.

As a result, users sometimes make mistakes or explore a bit further than they really

wanted to. Make your application tolerant and forgiving. Forgiveness means letting

users do anything reasonable, letting them know they won't break anything, always

warning them when they're entering risky territory, then allowing them either to back

away gracefully or to plunge ahead, knowing exactly what the consequences are. Even

actions that aren't particularly risky should be reversible. Tell the users about any

exceptions to this rule.

When options are presented clearly and feedback is appropriate and timely, learning

is relatively error-free. Alert messages should therefore be infrequent. If the user is

subjected to a barrage of alert messages, something is wrong with the program design.

Perceived stability

Users feel comfortable in a computer environment that remains
understandable and familiar rather than changing randomly.

People use computers because computers are versatile and fast. Computers can

calculate, revise, display, and record many kinds of information far faster than people

can. If users are to cope with the complexity that the computer handles- so easily, they

need some stable reference points.

To provide a visual sense of stability, the Apple Desktop Interface provides a two-

dimensional space on which objects are placed. It also defines a number of consistent

graphic elements (menu bar, window border, and so on) to maintain the illusion of

stability.

To provide a conceptual sense of stability, the interface provides a clear finite set of

objects and a clear finite set of actions to perform on those objects. Even when
particular actions are unavailable, they are not eliminated from a display, but are

merely dimmed.

It is the illusion of stability that is important, not stability in any strict physical sense.

The environment can, and should, change as users interact with it, but users should

feel that they have a number of familiar "landmarks" to count on.

Chapter 1: Philosophy

Aesthetic integrity

Visually confusing or unattractive displays detract from the effectiveness of

human-computer interactions.

Different "things" look different on the screen.

Users should be able to control the superficial appearance of their computer
workplaces—to display their own style and individuality.

Messes are acceptable only if the user makes them—applications aren't

allowed this freedom.

In traditional applications, the visual appearance of the screen has been a low priority

and consequently somewhat arbitrary. In contrast, the Apple Desktop Interface

depends on the visual appearance of the screen. People deserve and appreciate

attractive surroundings. Consistent visual communication is very powerful in

delivering complex messages and opportunities simply, subtly, and directly.

Users should have some control over the look of their workspaces. This allows

individual expression and relieves the computer designer of having to devise one

"look" that appeals to everyone.

The next section summarizes some basic principles of visual design.

Principles of graphic communication
Good design must communicate, not just dazzle. It must inform, not just

impress.

The services of a skilled graphic designer are worth the expense.

The real point of graphic design, which comprises both pictures and text, is clear

communication. In the Apple Desktop Interface, everything the user sees and

manipulates on the screen is graphic. As much as possible, all commands, features,

and parameters of an application, and all the user's data, appear as graphic objects on
the screen.

Graphics are not merely cosmeuc. When they are clear and consistent, they

contribute greatly to ease of learning, communication, and understanding. The
success of graphic design is measured in terms of the user's satisfaction and success in

understanding the interface.

Principles of graphic communication

If you design your icons and other graphics on the target screen, rather than on paper,

you'll take advantage of whatever that screen has to offer and you'll have the best

design possible. Not all screens are alike. For example, a Macintosh Plus has

approximately square pixels that are either black or white. Apple II pixels aren't

square, and can be any of many different colors.

Visual consistency

The purpose of visual consistency is to construct a believable environment for users.

Because such concepts as storing documents in folders and throwing things away in the

trash can are the same both in the real world and in the Apple Desktop environment,

users don't have to relearn them to begin working. This transfer of skills is one of the

most important benefits of a consistent interface, especially for beginning users.

Photographic realism isn't essential; the important thing is that the user understands

the intended meaning. A well-designed symbol or caricature can convey meaning

better than a completely realistic picture.

If images don't efficiently convey meaning, the user is lost in an environment of

random objects, and communcation breaks down. Graphics—the icons, windows,

dialog boxes, and so on—are the basis of effective human-computer dialog and must

be designed with that in mind.

Simplicity

Simple design is good design. Don't clutter the screen with too many windows,

overload the user with complex icons, or put dozens of buttons in a dialog box.

Because icons and dialog boxes must fit in a small space, the messages they convey

must be simple and straightforward. Simple designs are easy to learn and to use, and
they give the interface a consistent look.

The icons, menus, windows, and other graphic elements on the screen make up a

basic language with which the user and computer communicate. The user selects an

icon and chooses an action from a menu, effectively telling the computer to "Open
MacPaint," for example. For this language to work well, the messages must be simple.

Chapter 1: Philosophy

Clarity

Good graphic design begins with an understanding of the situation the user is in or of

the problem being solved. A picture isn't always the answer—sometimes words do the

job better. Make graphics clear and readable. Try them out on real users, not just on

your fellow artists or programmers. The most important part of the graphic should be

recognized first, then the second most important part, and so on. Use visual cues such

as arrows, movement, and the arrangement of elements to direct the eye to the correct

place. The symbols used in different kinds of alerts tell the user if the alert is a note,

caution, or warning.

Animation, when used sparingly, is one of the best ways to draw the user's attention to

a particular place on the screen. For example, users soon learn that the quickest way to

find a pointer on a busy screen is to move the mouse, making the pointer move on the

screen. Animated pointers reassure the user, during a lengthy process such as saving a

large document to disk, that the system is alive and well.

A strategy for programming
The Apple Desktop Interface relies on some distinctive models for programming,

some of which are unfamiliar even to experienced programmers.

To help the programmer make use of this interface, and to carry through in these

models, some Apple hardware systems provide an abundance of tools in ROM. The
developer derives two major advantages from using ROM-based tools and resources:

compatibility and efficiency. The more a program bypasses or replaces these tools

and resources, the more likely that sooner or later it will be incompatible with new
products or features.

Although a developer might know a more direct way of getting information or

performing an operation, using system-provided features ensures hardware

independence. For example, always reference the proper data structures to determine

the current size of a screen rather than using the constant values for current hardware.

The next sections deal with some important programming issues that are at the heart of

the Apple Desktop Interface.

A strategy for programming 1

1

Modelessness

With few exceptions, a given action on the user's part should always have the

same result, irrespective of past activities.

Modes are contexts in which a user action is interpreted differently than the same

action would be interpreted in another context. In other words, the same action, when
completed in two different modes, results in two different reactions. A mode typically

restricts the operations that the user can perform while the mode is in effect.

Because people don't usually operate modally in real life, dealing with modes in

computer environments gives the impression that computers are unnatural and

unfriendly.

A mode is especially confusing when the user enters it unintentionally. When this

happens, familiar objects and commands may take on unexpected meanings and the

user's habitual actions cause unexpected results.

Most conventional software uses modes heavily. It's tempting to use modes because

they sometimes make programming easier. But if you yield to the temptation too

frequently, users will consider using your application a chore rather than a satisfying

experience.

This is not to say that you should never use modes in applications. Sometimes a mode
is the best way out of a particular problem. Most of these acceptable modes fall into

one of the following categories:

Long-term modes, such as doing word processing as opposed to graphics editing.

In this sense, each application is a mode.

D Short-term "spring-loaded" modes, in which the user must constantly do
something to maintain the mode. Examples would be holding down the mouse
button to scroll text or holding down the Shift key to extend a text selection.

Alert modes, in which the user must rectify an unusual situation before proceeding.

Keep these modes to a minimum.

Other modes are acceptable if they do one of the following:

They emulate a familiar real-life situation that is itself modal. For example,

choosing different tools in a graphics application resembles the real-life choice of

physical drawing tools. MacPaint and other palette-based applications exemplify

this use of modes.

They change only the attributes of something, but not its behavior. The boldface

and underline modes of text entry are examples.

They block most other normal operations of the system to emphasize the modality,

as in error conditions incurable through software (for example, a dialog box that

disables all menu items except Close).

12 Chapter 1: Philosophy

If an application uses modes, there must be a clear visual indication of the current

mode, and the indicator should be near the object most affected by the mode. A good

example is the changing pointer in MacPaint: it looks like a pencil, paintbrush, spray

can, or eraser, depending on the function ("mode") the user has chosen. It should

also be very easy to get into or out of the mode (such as by clicking on a different

palette symbol).

No mode should ever prevent a user from saving a document or quitting the

application.

The event loop

Applications are prepared for the user to do anything at any time.

The event loop is central to programming for the Apple Desktop Interface. The event

loop is the central routine of any application. An application doesn't have to expect a

certain set of events in a particular order, but constantly looks for inputs (mouse

actions, keystrokes, disk insertions) that can occur in any order and to which it must

respond in specific ways.

This approach to programming contrasts with programs that systematically limit the

alternatives available to the user, assuring that the user follows the "right" path to the

"right" place. Instead, the emphasis is on responding to each local request the user

makes, leaving the responsibility for the final destination with the user. In each

context, the widest possible range of user activities should be allowed. For example,

there's no reason not to let the user set printing options before there's anything to

print.

Reversible actions

Always provide a way out

Because the Apple Desktop Interface encourages users to be active, they often request

something they don't really want. To encourage such deliberate (though often

unplanned) activities and to give users a sense of control over these activities,

programmers should make actions reversible whenever possible. Users should, for

example, be able to cancel activities easily, particularly those that are unexpectedly

involved. They should also have a range of deliberate choices to confirm that they do

want to do something particularly drastic, complex, or time-consuming.

A strategy for programming 13

The screen

The screen is the stage for human-computer interactions.

In many computer systems, most of the activity is invisible. Users make inputs, to

which the computer returns elaborate responses after some amount of calculation.

The screen then becomes the "mail slot" through which exchanges between the user

and the computer system take place.

In the Apple Desktop Interface, the screen displays a representation of the "world"

that the computer creates for the user. On this screen is played out the full range of

human-computer interactions. Initially, it provides the alternatives; then it reflects

the results of requested activities; then it again shows the alternatives; and so on. And
it does this in an extremely well-defined way. The details are in Chapters 2 and 3.

Though the screen is itself not the interface—the functionality provided by the

interface elements is the interface—the screen does play a central role, and managing

it is one of the programmer's most important tasks.

Plain language

Communicate with the user in concise and simple terms.

The Apple Desktop Interface is approachable by the unsophisticated user. It requires

no special "language." In fact, much of the user-computer interaction is graphic. The
user points to objects on the screen and selects from available lists; the computer

changes text and graphics at the user's request.

Occasionally, the computer must display textual messages, either to describe a

particular situation or to ask the user for a specific decision. In these instances, the

phrasing must be very direct and unambiguous. It should inform users directly of the

options available.

Whenever words are involved, the design team should include a skilled writer.

14 Chapter 1: Philosophy

User testing

The primary test of the user interface is its success with users.

Can users understand what to do and can they accomplish the task at hand easily and

efficiently? The best way to answer these questions is to put them to the users.

The design process

Users should be involved early in the design process so that changes in the basic

concept of the product can still be made, if necessary. While there's a natural

tendency to wait for a good working prototype before showing the product to anyone,

this is too late for the user to have a significant impact on design. In the absence of

working code, you can show test subjects alternate designs on paper or storyboards.

There are many ways that early concepts can be tested on potential users of a product.

Then, as the design progresses, the testing can become more refined and can focus on

screen designs and specific features of the interface.

Test subjects

There is no such thing as a "typical user." You should, however, be able to identify

some people who are familiar with the task your application supports but are

unfamiliar with the specific technology you are using. These "naive experts" make
good subjects because they don't have to be taught what the application is for, they are

probably already motivated to use it, and they know what they need to accomplish the

task.

You don't need to test a lot of people. The best procedure for formative testing (testing

during the design process) is to collect data from a few subjects, analyze the results,

and apply them as appropriate. Then, identify new questions that arise and questions

that still need answers, and begin all over again—it is an iterative process.

Procedures

Planning and carrying out a true experimental test takes time and expert training. But

many of the questions you may have about your design do not require such a rigid

approach. Furthermore, the computer and application already provide a controlled

setting from which objective data can be gathered quite reliably. The major

requirements are

D to make objective observations

to record the data during the user-product interaction

A strategy for programming 1

5

Objective observations include measurements of time, frequencies, error rates, and

so forth. The simple and direct recording of what someone does and says while

working is also an objective observation, however, and is often very useful to

designers. Test subjects can be encouraged to talk as they work, describing what they

are doing or trying to do, what they expect to happen, and so on. This record of a

person's "thinking aloud" is called a protocol by researchers in the fields of cognition

and problem-solving, and is a major source of their data.

The process of testing described here involves the application designer and the test

subjects in a regular cycle of feedback and revision. Although the test procedures

themselves may be informal, user testing of the concepts and features of the interface

should be a regular, integral part of the design process.

Designing for disabled people

Computers hold tremendous promise for people with many kinds of disabilities. In

terms of increasing productivity and mobility, computers can have a far greater

impact on disabled people than on other users. But too often, computers become
obstacles rather than enablers, because many disabilities make it hard to use standard

computers and software. In most cases, thoughtful hardware design is the solution, but

there are things that software designers can do, too.

Many of the modifications that make programs easier for disabled people to use are

simple and inexpensive to make, and they often have a welcome and unexpected side

effect—the programs are easier for everyone to use. Although sidewalk curb cuts are

designed to help people who rely on crutches or wheelchairs, they are used and

appreciated almost as much by skateboarders and stroller-pushers.

This section describes some of the ways you can design with disabled users in mind.

For more information, contact Apple's Office of Special Education Programs.

Vision disabilities

People with vision problems have the most trouble with the output display. The ability

of the Macintosh to handle different sizes of text makes it easy to accommodate the

needs of many people with vision problems. Software can be designed with a "zoom"
feature that automatically increases the size of characters on the screen.

Color is a problem for many people. Don't let people's ability to use your software

depend on their ability to distinguish one color from another. Be sure that all

information conveyed by color coding is also presented in some other way (by text,

position, or highlighting).

16 Chapter 1: Philosophy

Many people have difficulty using the instruction manuals that usually accompany

software products, either because they have difficulty reading small print or because

they physically can't handle books. These people appreciate having at least the most

important part of the manual's text available in electronic form, so that they can

display or print it in oversize characters, print it with a Braille printer, or have it read

to them through a speech synthesizer. All users benefit from manuals in electronic

form, which can quickly be searched for specific topics and keywords.

Hearing disabilities

Hearing problems are generally no obstacle to using computers, except when
important cues are given only with sound. Aside from the obvious exceptions of music

or voice-synthesis applications, software should never rely solely on sound to provide

important information. Supplement all audible messages with visual cues, or allow the

user to choose visible instead of audible messages.

Other disabilities

People with cognitive or verbal impairments are greatly helped by clear and simple

language, icons with obvious meanings, and carefully designed displays. Don't make
the user's success depend on his or her ability to remember many different things.

Another way to make computers easier for both disabled people and others is to

provide macros, making it possible to combine a number of keystrokes and mouse
movements into one keystroke. The way macros are created and accessed must be
clear and simple. It shouldn't be easy for a user to invoke a macro accidentally.

Designing for disabled people 1

7

Chapter 2

Elements of the
Desktop Interface

19

To implement the principles stated in Chapter 1, Apple has defined two classes of

standard interface elements for the Apple Desktop Interface:

screen elements that define the "look" of the Apple Desktop Interface

conventions for human-computer interactions that account for the "feel" of the

interface

The consistent "look and feel" of this interface makes users feel comfortable when they

use a range of applications on Apple computers.

Both kinds of elements are introduced briefly in this chapter. Chapter 3 provides

details of their content and form.

Screen elements

The "look" of the screen provides a basic visual context for consistent use

across applications.

Apple has paid a great deal of design attention to the visual integrity of the screen used

in its Desktop Interface, to make this screen approachable and usable as a

representation of available activities.

There are three fundamental screen elements: the desktop, windows, and menus.

The desktop

The desktop (shown in Figure 2-1) establishes the metaphor for the entire interface,

and provides a stable, personalized background for the user. It's the "surface" that the

user sees when a system is started up, and is the launching pad for all activities.

20 Chapter 2: Elements of the Desktop Interface

Menu bar —
Menu titles

- d . File Edit Uieui Special

Icons

Ddta

1 1 ,297K in disk 7.874K available

Q
charts taxes personnel

Windows

Desktop

X Q

_zl
personnel

2 items 1
1
,297K in disd 7 ,874r available

[llll

Tr ash

Figure 2-1

The Finder desktop

Visually, the desktop appears as a gray background on which objects are placed. The

desktop can be personalized. The background has a default pattern, but the user can

change its visual texture with the Control Panel desk accessory. The user also controls

the location of objects on this desktop, and the size of some of them.

Icons, small pictures representing available objects, sit directly on the desktop. To
select a disk, folder, application, or document, the user selects the corresponding

icon, rather than having to type the name of the object it represents.

When a disk icon is selected, it can be opened to become a window, which also

appears to rest on the desktop. The window presents a surface of its own, where the user

sees icons representing the folders, documents, and applications that the disk

contains. The user can open a number of disk windows on the desktop, and view their

contents simultaneously.

The Finder is the application that controls the desktop, provides a view of available

documents and applications, and lets the user organize, copy, move, rename, and

delete them. The Finder also lets the user launch an application, which typically opens

up its own window. An application is launched by opening either the application icon

itself, or the icon for a document or stationery template created with that application.

Screen elements 21

Another desktop element is the trash can, represented by its own icon. The trash can

icon is initially in the lower-right corner of the desktop, but can easily be moved. This

element provides a very concrete way for users to delete documents and applications:

they simply drag the corresponding icons into this trash can. Rather than mystifying

the deletion of files, creating horrible images of computer memory losses, this

mechanism provides a very understandable framework for this activity. It also

prevents the user from inadvertently deleting materials with random keystrokes;

putting something in the trash is a very deliberate and reversible action—up to a

point, documents can be retrieved from the trash can.

Users can return to the desktop directly from any application. This provides a familiar

environment where the user can organize past activities, perform housekeeping

chores, and consider and initiate new activities.

Windows

A window is a frame for viewing something, as determined by the application. For

example, each MacWrite window provides a view into a written document. To provide

a common framework for the many kinds of information that users work with, windows
are highly standardized (Figure 2-2).

Because more than one window can be viewed at once, users can arrange things the

way they like and move information between windows. Because windows can overlap,

users can "set aside" information yet still have ready access to it.

Manipulating windows—moving them, overlapping them, resizing them—does not

affect the content of the windows, only the user's view of it. Again, this lets users tailor

their work environment without fundamentally changing the elements in this

environment.

Close box

Title bar —
Zoom box

Scroll bar -

Size box —

Scroll bar -

Scroll box —
Scroll arrow

ZZ 7w

frri v ••* w£

Figure 2-2

Standard document window

Chapter 2: Elements of the Desktop Interface

Window manipulation

There are very standard conventions for opening, closing, moving, sizing, scrolling,

and zooming windows. No matter what application is being used, users know how to

control the appearance of windows on the screen, and how to adjust the workspace for

particular tasks and to their tastes.

When the user manipulates windows on the screen, visual feedback is immediate.

When users move windows, they have the sense of directly moving them; changes in

the graphic display keep up with the user's movements. When users open or close

windows they see an illusion of such opening or closing, enhancing the sense of "real

world" activity. When a document is scrolled, the scroll box provides direct visual

feedback about the position of the current view within the document as a whole.

All of these mechanisms emphasize user control and the direct manipulation of

concrete objects.

Dialog boxes, alert boxes, and controls

Among the other standard elements are window-like dialog boxes and alert

boxes—and the specific controls that are used in these boxes. These boxes provide a

standard framework in which the computer can present alternatives from which the

user can choose.

The purpose of dialog boxes is to elicit responses from the user, typically several at

one time. For example, the print dialog box allows the user to specify the number of

copies to be printed, the pages to be printed, whether there should be a title page, and

so on (Figure 2-3). A dialog box appears whenever the user chooses a menu item that is

followed, in the menu itself, by an ellipsis (. . .). Standard dialog boxes suspend the

system until the user either provides the needed information or cancels the operation.

All requests made in dialog boxes are phrased in plain language and in a friendly and

nonthreatening manner.

When the dialog box is complete, the user dismisses it by "pushing a button" in the

dialog box (by clicking the mouse button while the screen pointer is within a button-

shaped object within the dialog box). This is not the same way standard windows are

closed. Also unlike standard windows, modal dialog boxes can't be moved or resized.

ImageLbruer
((OK]|

Copies:m Pages: ® All O From: To:
[Cancel]

[Help
)

Couer P

Paper S

age:

ourc

® No O First Page O Last P

e: ® Paper Cassette O Manu

age

al Fee J

Figure 2-3

Dialog box

Screen elements 23

Alert boxes notify the user, in plain and polite language, whenever an unusual

situation occurs (Figure 2-4). They can warn of dangerous situations, recommend

corrective actions, or provide information that might change the user's plans—but the

user is always in charge. There are different levels of alerts, according to the severity of

•the situation.

As with dialog boxes, users dismiss alert boxes by pushing a button, but can't move or

resize them.

A Hre you sure you want to

erase all chanyes to your

document?

Figure 2-4

Alert box

Standard controls are used within dialog and alert boxes. Their appearance and

functions are standardized. They provide users with familiar tools and formats for

responding to the computer's need for information. Described in detail in Chapter 3,

these controls include buttons, check boxes, radio buttons, and text entry fields.

Menus

Menus are central to the "noun-verb" principle of the Apple Desktop Interface: the

user first selects an object (noun), either on the desktop or in a window, then chooses,

from a menu, the operation (verb) to be applied to this object.

Because menus display the full range of potential activities available, users don't have

to remember and type command names. Instead, they simply choose from the

alternatives presented. The user's task is recognition, not recall.

Because they list all available activities, menus let users quickly get an overview (or, for

new users, a preview) of what is possible at any given moment.

Finally, pull-down menus make it possible to keep unnecessary details out of sight, and

out of the way of the main task, while still making those details quickly and easily

available. The user "pulls down" a menu only when it's needed—the rest of the time,

the menu is "rolled up" into the menu bar at the top of the screen.

The overall concept of pull-down menus comprises three fundamental screen

elements: the menu bar, where the name of each available menu appears; pull-down

menus, which appear only when the user wants them to; and the menu items

themselves.

Chapter 2: Elements of the Desktop Interface

The menu bar

The menu bar serves as a stabilizing element. Even when the screen changes

drastically, as when the user changes from one application to another, the menu bar is

always visible at the top of the screen, adding to the illusion of stability amid a flexible

environment.

The elements of the menu bar—the words and phrases that are the titles of the different

menus—are also quite stable (Figure 2-5). Three of the menus—the Apple menu, the

File menu, and the Edit menu—are standard menus that appear as the first three

menus in almost every application. When making up your own menus, do not give

them the same names as standard menus.

In addition to the three standard menus, each applicauon has its own unique menus.

Because they appear to the right of the more standard menus, application-specific

menus don't interfere with the user's sense of stability.

Menu bar

Titles of enabled
menus

Titles of disabled

menus

Figure 2-5

Menu bar

Menu items

Within an applicauon, menu items don't usually vary (the exceptions are "integrated"

applications in which, for example, the spreadsheet and the word processor may have

different sets of menus). This consistency contributes to the user's sense of stability.

Even though certain items are sometimes unavailable, they remain in the

menu—dimmed to show that they're unavailable at the moment.

The user can either browse through menu items—without having to choose any of

them—or choose one item to be executed. To browse, the user simply holds the

mouse button down and moves the pointer through the menu bar, which pulls down
one menu at a time.

Choosing a menu item is a deliberate process. To choose an item from the menu that's

pulled down, the user drags the pointer down to that item and releases the mouse

button.

Screen elements 25

* File I I Search Format Font Style

Menu with eight

menu items (two
are dividing lines)

Figure 2-6

Menu

Menus can include a wide range of items, typically grouped by type to make the most

sense to the user (Figure 2-6).

The Apple menu, often called the desk accessory menu, is always the leftmost

menu (Figure 2-7). It lists the desk accessories that are currently installed on the

system. This menu changes when the user installs a new desk accessory or deletes an

old one. Desk accessories are usually "mini-applications," implemented as device

drivers, that can operate at the same time as a full-scale application.

About MacPaint..

Alarm Clock

Calculator

Control Panel

Key Caps
Note Pad
Puzzle

Scrapbook

Figure 2-7

The Apple menu

The second menu is the File menu, which lets the user perform tasks relative to whole

documents—opening, closing, saving, and printing—from within an application

(Figure 2-8). A key item in the File menu is the Quit operation, which lets the user quit

an application at any time. This is in contrast to traditional applications that require

the user to step backward to a "Main Menu" before quitting.

26 Chapter 2: Elements of the Desktop Interface

Jira

New
Open...

:*:n

3«0

Close

Saue 9SS

Saue Rs...

Reuert to Saued

Page Setup...

Print...

Quit sea

f[[
Undo 36Z

Cut 9€H

Copy sec

Paste XV
Clear

Select Rll

Show Clipboard

Figure 2-8

File and Edit menus

There are two important principles behind the items in the Edit menu (Figure 2-8).

First, they make it explicit that anything the user can do, the user can also undo.

Second, they allow the user to easily move information from one part of a document

to another, or between documents—even between documents that are created by
different applications.

Every application should include an Edit menu with Undo, Cut, Copy, Paste, and

Clear (in that order). Even if the application itself doesn't use them, those five

commands must be available for desk accessories that may need them.

Human-computer interaction

Central to the Apple Desktop Interface is direct manipulation, by the user, of graphic

objects on the screen. The mouse, or other pointing device, lets the user point to

objects, select objects with a click of the mouse button, move objects about, and

choose actions to apply to the selected objects. Direct physical control over the work
environment puts the user in command and optimizes the "see-and-point" style of

interface.

Pointing is central to this interface, as it allows users to directly indicate what

elements on the screen are relevant to their plans. Once an item is pointed to, it can

be selected for action; until something is selected, pointing is simply a way to browse

through available items.

The keyboard is not then the central element in the Apple Desktop Interface, as it is in

most computer systems. Of course, the keyboard is essential for text entry, and can

provide alternative ways to accomplish some tasks, but it's not part of the direct-

manipulation interface.

Human-computer interaction 27

Pointing

The standard pointing device is the one-button mouse. A pointer on the screen

follows the motion of the mouse. Other devices—including track balls, joysticks, and

styluses—can also perform the functions of a mouse.

Mouse actions

Simply moving the mouse just moves the pointer. All other events—changes to the

information displayed on the screen—take place only when the mouse button is

used.

The user can do three things with the mouse button: click, press, and drag. Clicking

happens when the user presses down on the mouse button and quickly releases it while

the mouse remains stationary. Pressing means holding the mouse button down for a

time while the mouse remains stationary. Dragging involves pushing down the mouse
button, moving the mouse (and the pointer) to a new location, and then releasing the

mouse button. With these few basic actions, the user can perform a wide range of tasks

in a consistent way.

Pointers

Pointers on the screen assume different shapes, according to the context of the

application, giving users additional feedback about their interactions with the

computer (Table 2-1). The changing pointer is one of the few truly modal aspects of

the Apple Desktop Interface: a given action may yield quite different results,

depending on the shape of the pointer at the time. It is essential that the user can easily

distinguish the different modes.

Three common pointer shapes are the arrow pointer, the I-beam, and the wristwatch.

The arrow pointer is the general-purpose pointer for selecting icons, pulling down
menus, and choosing menu items.

To move the insertion point (the blinking vertical bar that shows the user where text

can be entered), the user moves the I-beam pointer to the new location and clicks

the mouse button. For the user, this is less awkward, more natural, and much faster

than a cursor-based system. Unlike cursors moved by arrow keys, the insertion point is

moved directly to a new location without intermediate states.

The wristwatch pointer indicates that user input is disabled while the computer is

doing something that will take a few moments.

28 Chapter 2: Elements of the Desktop Interface

Table 2-1

Pointers

Pointer Name Used for

1^ Arrow

I I-beam

+ Crosshairs

<§j Plus sign

£> Wristwatch

Scroll bar and other controls, size box, title bar, menu bar, desktop

Selecting and inserting text

Drawing, shrinking, or stretching graphic objects

Selecting fields in an array-

Showing that a lengthy operation is in progress

^ Spinning beachball Showing that the system is still alive during a lengthy operation

Selecting

Before performing an operation on an object (or several objects), the user must select

it to distinguish it from other objects. This selection is typically done by clicking on an

object, or by dragging through a range of objects or a portion of text.

Selecting the object of an operation before identifying the operation itself is a

fundamental characteristic of the Apple human interface, and has been referred to

earlier as the "noun-verb" paradigm. The paradigm matches the syntax that we
normally use in ordinary noncomputer actions: "Hey, you..." (selection) "...do this"

(choose an action).

There is always a visual cue to show that something has been selected. For example,

text and icons usually appear in inverse video when selected. The important thing is

that there should always be immediate feedback, so the user knows that clicking or

i
dragging the mouse had an effect.

Separating the selection and action functions gives the user considerable power and

flexibility. Selecting before committing to an action means that the user can explore

land change direction without executing inappropriate or time-consuming routines.

ISimply selecting an object—for example, a document—doesn't alter the contents of

[this object. Making a selection needn't commit the user to anything; there is no
|penalty for making an incorrect selection.

In most cases, the user can undo any selection by making any other selection. When
is is not possible, either use an alert box to warn the user, or implement cancel or

indo commands to let the user gracefully back out of undesired situations.

Human-computer interaction 29

Keyboard actions

While the keyboard is not the focal point of human-computer interaction, it is

required for entering text: naming objects and supplying the written content of

documents. However, the user can choose commands, manipulate files, answer

questions, and acknowledge communications without using the keyboard.

The keys on the keyboard are arranged in familiar typewriter fashion. There are two

primary kinds of keys: character keys and modifier keys. A character key sends, to

the computer, a character that then appears on the screen—much as a keystroke on a

typewriter creates a character on a piece of paper.

A modifier key alters the meaning of a character key if the modifier key is held down
while the character key is pressed. Modifier keys also sometimes affect the way the

mouse click is interpreted. Modifier keys include the Shift, Option, Caps Lock,

Control, and Apple (or Command) keys. Not all Apple keyboards contain all of these

keys.

One modifier key, the Apple or Command key, allows users to perform some
operations—operations that are usually available only through menus—from the

keyboard. For example, in some applications, pressing Apple-Q is the equivalent of

choosing Quit from the File menu. It is critical that these actions (called keyboard

equivalents) be accessed in a consistent way. Each modifier key has a general meaning

in all applications. Certain combinations of modifier key and character key are

reserved for specific functions to ensure consistency. Some Apple keyboards also have

other keys, such as arrow keys and function keys. See Chapter 3 for details.

Color

Apple's goal in adding color to the Desktop Interface is to add meaning, not just to

color things so they "look good." Color can be a valuable additional channel of

information to the user, but must be used carefully, otherwise, it can have the opposite

of the intended effect and can be visually overwhelming (or look gamelike).

Color is ultimately the domain of the user, who should be able to modify or remove
any coloring imposed by the application. Unless you are implementing a color

application such as a paint or draw program, you should consider color only for the

data, not the interface.

To implement color successfully in an application, you should understand some of the

complex issues surrounding its use. Many major theories on the proper use of color

are not complete or well defined. The way in which the human eye sees color is not

fully understood, nor are color's subjective effects.

30 Chapter 2: Elements of the Desktop Interface

What is color?

Color is made up of three elements:

Hue is what is usually meant by "color": whether it's red, blue, green, or yellow,

and so on.

Saturation is the purity of a color—rich, intense colors are highly saturated; dull

or diluted colors are not very saturated. For example, pink is a low-saturation red;

navy blue is a high-saturation blue.

Brightness is how light or dark a color is—how much white is in it. Some pure hues

are naturally brighter than others: yellow is the lightest hue; violet is the darkest.

Bright colors attract the eye.

Standard uses of color

In traditional user interface design, color is used to associate or separate objects and

information in the following ways:

discriminate between different areas

show which things are functionally related

show relationships among things

identify crucial features

Color coding

Different colors have standard associations in different cultures. "Meanings" of colors

usually have nothing to do with the wavelength of the color, but are learned through

conditioning within a particular culture. Some of the most universal meanings for

I
colors are:

Red: Stop, error, or failure. (For disk drives, red also means disk access in

progress; don't remove the disk or turn it off.)

Yellow: Warning, caution, or delay.

Green: Go, ready, or power on.

Color 31

It's also generally true that reds, oranges, and yellows are perceived as hot or exciting

colors, while blues and greens are cool, calm colors. Colors often have additional

standard meanings within a particular discipline: in the financial world, red means

loss and black means gain. To a mapmaker, green means wooded areas, blue means

water, yellow means deserts. In an application for a specific field, you can take

advantage of these meanings; in a general application, you should allow users to

change the colors, and to turn off any color coding that you use as a default. Having

more than one color coding scheme in effect at any one time can be very confusing.

For attracting the user's attention, orange and red are more effective than other

colors, but usually connote "warning" or "danger." (Be aware, though, that in some

cases, attracting the eye might not be what you want to do. For example, if

"dangerous" menu items are colored red, the user's eye will be attracted to the red

items, and the user might be more likely to select the items by mistake.)

Although the screen may be able to display 256 or more colors, the human eye can

discriminate only about 128 pure hues. Furthermore, when colors are used to signify

information, studies have shown that the mind can only effectively follow four to seven

color assignments on a screen at once.

General principles of color design

Two principles should guide the design of your application: begin the design in black

and white, and limit the use of color, especially in the application's use of the standard

interface.

Design in black and white

You should design your application first in black and white. Color should be

supplementary, providing extra information for those users who have color. Color

shouldn't be the only thing that distinguishes, two objects; there should always be other

cues, such as shape, location, pattern, or sound. There are several reasons for this:

Monitors: Many users won't have color monitors. The majority of Macintosh

computers and many Apple II's have only a monochrome display.

Printing: Currently, color printing is not very accurate, and even when high-

quality color printing becomes available, there is usually a significant change in

colors between media (as you've noticed if you've ever compared an art

reproduction to the original).

32 Chapter 2: Elements of the Desktop Interface

Colorblindness: A significant percentage of the population is colorblind to some
degree (in Europe and America, about 8% of males and 0.5% of females have some
sort of defective color vision). The most common form of colorblindness is an

inability to distinguish red and green from gray. In another form, yellow, blue, and

gray are indistinguishable.

Lighting: Under dim lighting conditions, colors tend to wash out and become
difficult for the eye to distinguish—the differences between colors must be greater,

and the number of colors fewer, for them to be discernible. You can't know the

conditions under which your application may be used.

Limit color use

In the standard interface part of applications (menus, window frames, and so on),

color should be used minimally or not at all; the Desktop Interface is very successful in

black and white. You want the user's attention focused on the content of the

application, rather than distracted by color in the menus or scroll bars. Use of color

in the content area of your application depends on what the application is for.

Graphics applications, which are concerned with the image itself, should take full

advantage of the color capabilities of Color QuickDraw, letting the user choose from

and modify as many colors as are available.

Other applications, which deal with the organization of information, should limit the

use of color much more than this. Color coding should be allowed or provided to

make the information clearer. Providing the user with a small initial selection of

distinct colors—four to seven at most—with the capability of changing those

available, or adding more, is the best solution.

Contrast and discrimination

Color adds another dimension to the array of possible contrasts, and care must be

taken to maintain good readability and graphic clarity.

Colors on grays

Colors look best against a background of neutral gray. Colors within your application

will stand out more if the background and surrounding areas (such as the window frame

and menus) are black and white or gray.

Color 33

Colored text

Reading and legibility studies in the print (paper) world show that colored text is

harder to read than black text on a white background. This also appears to be true in

the limited studies that have been done in the computer domain, although almost all

these studies have looked at colors on a black background, rather than a white

background. (Keep this in mind if you hear that "amber is the best color for text.")

Beware of blue

The most illegible color is light blue, which should be avoided for text, thin lines, and

small shapes. Adjacent colors that differ only in the amount of blue should also be

avoided. However, for things that you want to make unobtrusive, such as grid lines,

blue is the perfect color (think of graph paper or lined paper).

Small objects

People cannot easily discriminate between small areas of color—to be able to tell what

color an object is, that object must be large enough to see without effort. Changes in

the color of small objects must be obvious, not subtle.

Specific recommendations

Remember that color should never be the only thing that distinguishes objects. Other

cues such as shape, location, pattern, or sound should always be used in addition to

color, for the reasons discussed above.

Backgrounds

Generally, all interface elements (menus, window frames, and so on) should maintain

a white background, using color to replace only pixels that are black in the black-and-

white interface. Maintaining the white background helps keep the clarity and the "look

and feel" of the Desktop Interface.

Outlines

Outlines of menus, windows, and alert and dialog boxes should remain in black. Edges

formed by color differences alone are hard for the eye to focus on, and these objects

may appear against a colored desktop or window.

34 Chapter 2: Elements of the Desktop Interface

Highlighting and selection

Most things—menu items, icons, buttons, and so forth—should highlight by reversing

the white background with the colored or black bits when selected. (For example, if the

item is red on a white background, it should highlight to white on a red background.)

However, if multiple colors of text appear together, Color TextEdit allows the user to

set the highlighting bar color to something other than black to highlight the text

better. The default for the bar color is always black.

Menus

In general, the only use of color in menus should be in menus used to choose colors.

However, color could also be useful for directing the user's choices in training and

tutorial materials: one color can lead the user through a lesson.

Windows

Since the focus of attention is on the content region of the window, color should be

used only in that area. Using color in the scroll bars or title bar can simply distract the

user. (The one exception is that if the user has color-coded icons in the Finder, the

title of a window—not the whole title bar—may be the same color as the icon from

which it came.)

Dialog and alert boxes

Except for dialog boxes used to select colors, there's no reason to color the controls

or text in dialog boxes; they should be designed and laid out clearly enough that color

isn't necessary to separate different sections or items. Alert boxes must be as clear as

possible; color can add confusion instead of clarity. For example, if you tried to make
things clearer by using red to mean dangerous and green to mean safe in the Erase Disk

alert box, the OK button—"go"—would be red and the Cancel button
—

"stop"—would
be green. Don't do this.

I Pointers

The pointer should always be visible. Most of the time, when it's being used for

selecting and choosing, it should remain black—color might not be visible over

potentially different colored backgrounds, and wouldn't give the user any extra

information. However, when the user is drawing or typing in color, the drawing or

text-insertion pointer should appear in the color that is being used. Except for

[multicolored paintbrush pointers, the pointer shouldn't contain more than one color

lat once—it's hard for the eye to discriminate small areas of color.

Color 35

Sound
The high-quality sound capabilities of some Apple computers let sound be integrated

into the human interface to give users additional information. This section refers to

sound as a part of the interface in standard applications, not to the way sound is used

in an application that uses the sound itself as data, such as a music composition

application.

When to use sound

There are two general ways that sound can be used in the interface:

It can be integrated throughout the standard interface to help make the user aware

of the state of the computer or application.

It can be used to alert the user when something happens unexpectedly, in the

background, or behind the user's back.

In general, when you would like to put an indicator on the screen to tell the user that

something has occurred—for example, that mail has come in, or that a particular

process has finished—this is a good time to use a sound.

Getting attention

If the computer is doing something time-consuming, and the user may have turned

away from the screen, sound is a good way to let the user know that the process is

finished, or it needs attention. (There should also be an indication on the screen, of

course.)

Alerts

Common alerts can use sounds other than the SysBeep for their first stage or two
before bringing up an alert box. For example, when the user tries to paste when there's

nothing in the Clipboard, or tries to backspace past the top of a field, different sounds

could alert them.

Modes

If your application has different states or modes, each one can have a particular sound
when it is entered or exited. This can emphasize the current mode, and prevent

confusion.

36 Chapter 2: Elements of the Desktop Interface

General guidelines

Although the use of sound in the Desktop Interface hasn't been investigated

thoroughly, these are some general guidelines to keep in mind.

Restraint

Be thoughtful about where and how you use sound in an application. If you overuse

sound, it won't add any meaning to the interface, and will probably just be annoying.

Redundancy

Sound should never be the only indication that something has happened; there

should always be a visible indication on the screen, too, especially when the user

needs to know what has occurred. The user may have all sound turned off, may have

been out of hearing range of the computer, or may be hard of hearing.

Unobtrusiveness

Most sounds can be quite subtle and still getting their meaning across. Loud, harsh

sounds can be offensive or intimidating. You should always use the sound yourself and

test it on users for a significant period of time (a week or two, not twenty minutes)

before including it in your application—if you turn it off after a day, chances are other

people will, too. You should also avoid using tunes or jingles—more than two or three

notes of a tune may become annoying or sound silly if heard very often.

Significant differences

Users can learn to recognize and discriminate between sounds, but different sounds

should be significantly different. Nonmusicians often can't tell the difference between
two similar notes or chords, especially when they're separated by a space of time.

User control

The user can change the volume of sounds, or turn sound off altogether, using the

Control Panel desk accessory. You should remember this, and should never override

this capability. Always store sounds as resources, so users can change sounds and add

additional sounds.

Sound 37

Summary
The look and feel of the Apple Desktop Interface has been defined very carefully to

make it approachable by both new and experienced computer users, and to let those

users focus on their tasks rather than on the computer. This is accomplished with just a

few basic objects (the desktop, windows, menus) and with a few basic actions

(pointing, selecting, and keyboard input). This simplicity is key to delivering on the

promise of effective human-computer interaction described in Chapter 1.

38 Chapter 2: Elements of the Desktop Interface

Chapter 3

Specifications

39

This chapter provides detailed specifications for the elements that were introduced in

Chapter 2. If you follow these specifications and take advantage of standard ROM-
based tools, your applications will be as compatible as possible with other

applications for the same hardware.

Introduction

The active application controls all communication between the user and the

computer. For your application to have the "look and feel" of the Apple Desktop

Interface, it must include the standard interface elements.

The Finder is a program that lets the user launch applications and organize, copy,

move, rename, and delete documents. When the user, from the Finder, opens an

application or a document belonging to an application, that application becomes

active and displays its document window. In a single-application environment, only

one application can be active at a time, and it has control of all windows (except desk

accessories). The user must return to the Finder to change from one application to

another. Multiprocessing will eventually allow several applications to share the

screen, each having control over its own windows, and the user will be able to switch

applications direcdy.

Each document is a unified collection of information—a business letter, list,

worksheet, chart, animation sequence, or piece of music. A complex application,

such as a data base system, might require several related documents. Some documents

can be processed by more than one application; but each document has a principal

application, which is usually the one that created it. If other applications can process

the same document, they are called the document's secondary applications .

Opening a document, whether through a menu or by double-clicking its icon,

launches the application that originally created that document (assuming the

application is available).

The desktop

The primary unifying metaphor in the Apple Desktop Interface is the desktop itself,

shown in Figure 3-1. It provides a sense of apparent stability, remaining constant while

its content changes.

40 Chapter 3: Specifications

Menu bar —

Menu titles

Icons

Windows

Desktop

2Z £ Q

Figure 3-1

The Finder desktop

Desktop icons are graphic representations of such things as disks, folders,

applications, documents, stationery, and the trash can, as shown in Figure 3-2.

Disk Icons H
Folder Icon

Application icons

Document icons

Stationery icons

LI

Trash Icon

Figure 3-2

Six kinds of Finder icons

The desktop 41

Applications are the programs with which users do their work or play—from word

processors to music composers to spreadsheets. Documents are the user's data

files—the place where all the work done in an application is stored. Stationery files

are templates that can contain anything a regular document can contain: a memo or

overhead template, or only page setup or layout information. Folders let the user

organize the desktop; they can contain applications, documents, stationery

templates, other folders, or any other sort of file. All of these objects can be stored on

disks, and can be erased by dragging their icons to the Trash on the screen.

Icons contribute greatly to the clarity and attractiveness of an application. The use of

icons in addition to (or instead of) words can also make it easier to translate programs

into other languages, except where the icons have different meanings in different

cultures. An item is easier to remember when it's represented by an icon with text than

if it's represented by either an icon alone or text alone. Wherever an explanation or

label is needed, consider using an icon.

The two basic subsystems of the desktop are the windows that allow flexible display of

information, and the menus (including palettes) that make many operations

immediately available.

Windows
The way the user accesses any document is through a window. A window is a view into

the document—if the document is larger than the window, the window is a view of a

portion of the document. The application puts one or more windows on the screen,

each window showing a view of a document or of auxiliary information used in

processing the document.

Generally, it is unwise to allow multiple windows for the same document because it

confuses the relationship of windows to icons ("Which window do I close to close the

document?"). If multiple views are desirable, the window can be split. (See the section

"Splitting a Window.")

There are several kinds of windows. Standard document windows are the most obvious

kind, but dialog and alert boxes are technically windows too. Most of this section deals

with document windows. Controls, dialog boxes, and alert boxes are discussed

together after the discussion of document windows.

This section is about a window's structural components, or window frame. For a

standard document window, these components include the title bar, size box, close

box, zoom box, and scroll bars. The application determines the content of the

window.

42 Chapter 3: Specifications

Document windows

Because a document may contain more information than a window can display at one

time, the window provides a view of a portion of a document. Document windows also

provide a graphic representation of opening, closing, and other operations

performed on documents. Windows are usually, but not necessarily, rectangles.

Figure 3-3 shows a standard document window and its components.

Close box

Title bar —
Zoom box

Scroll bar -

Size box —
Scroll bar —
Scroll box —
Scroll arrow

IO Title iHi

KF

Ml lOS
&

Figure 3-3

Standard document window

Opening and closing windows

Windows appear on the screen in different ways as appropriate to the purpose of the

window. The application controls at least the initial size and placement of its windows.

A standard window has a close box. When the user dicks the close box, the window
goes away. (In the Finder, this is animated—the window shrinks into the folder or icon

from which it was opened.) If an application doesn't support dosing a window with a

close box, it shouldn't include a close box on the window.

The application in control of the window determines what's done with the window
visually and logically when the close box is clicked. To the user's eye, a window, once

closed, can seem either to retreat into an icon or to simply disappear. In reality,

either the information in the window may be saved (this is the usual case) and will still

be there when the window is reopened, or the changes are not saved and the window is

empty each time it's reopened.

When closing a document, the user must be able to choose whether to save any

changes made to the document since the last time it was saved.

Windows 43

Multiple windows

Some applications can keep several windows on the desktop at the same time. Each

window is in a different plane. Windows can be moved around on the desktop much as

pieces of paper can be moved around on a real desktop. Each window overlaps those

behind it and is overlapped by those in front of it. Even when windows don't overlap,

they retain their front-to-back ordering.

Each application may deal with the meaning and creation of multiple windows in its

own way. Different windows can represent

separate documents being viewed or edited simultaneously

related parts of a logical whole (such as the listing, execution, and debugging of a

program)

different views of the same information (such as a spreadsheet and a graph that

represent the same number

The disadvantage of multiple windows is that the desktop can become cluttered. Some
applications provide, in the menu bar, a Windows menu. This menu allows the user to

quickly choose a window even though it may be out of sight under other windows.

Figure 3-4 illustrates multiple windows.

Job Titles

The active window

Recounts

Memo

EE

o

mi

Trauel Plans

Figure 3-4

Multiple windows

44 Chapter 3: Specifications

The active window

Although several windows can be open on the desktop at the same time, the user can

work in only one window at a time. This window is called the active window. All other

open windows are inactive. Things can be happening to documents in inactive

windows, but only the active window can be manipulated direcdy. For example, if the

user chooses Close from the File menu, only the active window is closed.

To make a window active, the user clicks anywhere inside it. Making a window active

has two immediate consequences:

D The window changes its appearance: its tide bar is striped and the scroll bars, close

box, zoom box, and size box appear.

The window "moves" to the frontmost plane, so that parts that had been covered by
other windows become visible.

Clicking in an inactive window activates it, but makes no other changes. To make a

selection within the window, the user must click again. When the user clicks in a window
that has been deactivated, the window should be reinstated just the way it was when it

was deactivated, with the scroll box in the same position and the same selection

highlighted.

When a window becomes inactive, the visual changes that took place when it was
activated are reversed. The ude bar is no longer striped and the scroll bars, close box,

zoom box, and size box disappear. Although the information within the window
remains visible (except where obscured by other windows), any selection is

deselected. Figure 3-4 shows the visual difference between active and inactive

windows.

Moving a window

Although each application has its own way of initially placing windows on the screen,

the user can move an active window—to make more room on the desktop or to

uncover a window it's overlapping—simply by dragging it by its title bar. A dotted

outline of the window follows the pointer until the user releases the mouse button. At

the release of the button the full window is redrawn in its new location. Moving a

window doesn't affect the appearance of the icons or document within the window;

they move right along with the window.

The act of moving an inactive window makes it active—unless the user holds down the

Apple key while moving the inactive window, in which case the window moves, in the

same plane, without becoming active.

The application should ensure that a window can never be moved completely off the

screen.

Windows 45

Changing the size of a window

If a window has a size box in its lower-right corner, the user can change the size of the

window—enlarging or reducing it to the desired size.

Dragging the size box attaches a dotted outline of the window to the pointer. The

outline's upper-left corner stays fixed, while the lower-right corner follows the

pointer. When the mouse button is released, the window is redrawn in the shape of the

dotted outline.

If a window can be moved, but not resized, then the user ends up constantly moving

windows on and off the screen. If the user moves the window off the right or bottom

edge of the screen, the scroll bars are the first things to disappear. To scroll the

window, the user must move the window back onto the screen again. If, on the other

hand, the window can be resized, then the user can change its size instead of moving it

off the screen, and will still be able to scroll.

Resizing a window doesn't change the position of the upper-left corner of the window
or the appearance of the part of the view that's still showing; it changes only how much
of the view is visible inside the window. One exception to this rule is a command such

as Reduce to Fit (in MacDraw), which changes the scaling of the view to fit the size of

the window. If, after choosing this command, the user resizes the window, the

application changes the scaling of the view.

Applications determine the minimum and maximum window size, which should

depend on the physical size of the display. If the user tries to shrink the window below
its minimum size, the attempt is ignored.

Window zooming

The more open documents on a desktop, the more difficult it is for the user to locate,

select, and resize the one to be worked on. Some Apple computers have a feature in

ROM that allows users—with a single mouse click in the window's zoom box—to drag

and size the active window to a size and location they previously selected, and then to

return the window to full size with another click. Figures 3-5 and 3-6 show a window in

the standard state and in the user-selected state.

If this feature is present, the zoom box is present at the right end of the window's title

bar (Figure 3-5). Because window zooming is not available on all Apple computers,

application programs must check the ROM and, if the feature is not present, bypass it.

(Window zooming does not involve the variable magnification you get with a zoom
lens.)

Application developers are encouraged to use the zoom window function on systems

that make it available.

46 Chapter 3: Specifications

« File Edit Search Format Font Style

Document

1
xx

Zoom box

« File Edit Search Format Font Style

1
.J--J

Zoom box
being clicked

Figure 3-5

Window in standard state

« File Edit Search Format Font Style

3H^= Document =^Hi

*l
i

\< to

Figure 3-6

Iwindow In user-selected state

Windows 47

The application supplies the values for the size and location of the standard state of the

window as well as the initial values for the size and location of the user-selected state.

The standard state is generally the full screen, or close to it, and should be the size

and location best suited to working on the document. As often as they want, users can

specify the user-selected state of the window, generally the size and location best

suited to organizing the desktop so that documents can be found and selected.

The user can't change the standard size and location, but the application can change it

within context. For example, a word processor might define the standard size and

location as wide enough to display a document whose width is specified in the Page

Setup dialog box. If the user invokes Page Setup to specify a wider or narrower

document, the application might change the values for the standard size and location

to reflect that change.

Explicit dragging or resizing of the window is handled according to these guidelines,

regardless of the presence or absence of the zoom window feature. The effect of

dragging or resizing depends on the state of the window and the degree of movement.

In the Macintosh computer, the user must drag or resize a window at least seven pixels

to cause a change in the user-selected state.

Windows open into the user-selected state if possible. The application must make sure

that the user-selected state fits on the current screen: if the window was previously on
an alternate or large screen, and is then opened on a single or smaller screen, the

application changes its size and location so the entire window is visible.

48 Chapter 3: Specifications

Scroll bars

Scroll bars are used to change which part of a document is shown in a window. Only

the active window can be scrolled.

A scroll bar is a light gray rectangle having on each end an arrow in a square box

(Figure 3-7). A window can have either a vertical scroll bar or a horizontal scroll bar,

or both. Vertical scroll bars are on the right side of the associated window; horizontal

scroll bars run along the bottom of the window. Inside the scroll bar is a white

rectangle called the scroll box. The rest of the scroll bar is the gray area.

Scroll arrow

-

O

Scroll box

Gray area

Scroll arrow - O

Figure 3-7

Vertical scroll bar

A scroll bar represents one dimension (either top to bottom or left to right) of the

entire document. The scroll box represents the relative location, in the whole
document, of the portion currently visible in the window. The scroll box may also

represent the relative amount of the document that can be seen in the window. (See

"Proportional Scroll Boxes" later in this section.)

Scroll bars 49

If the user "moves" the document by clicking either a scroll arrow or in the gray area,

the scroll box moves along with it. If the user drags the scroll box, the document

"moves" along with it. If the document is no larger than the window, the scroll bars are

inactive (the scrolling apparatus isn't shown in them). If the document window is

inactive, the scroll bars aren't shown at all.

There are several ways the user can move a document through the window: sequential

scrolling with the scroll arrows, "paging" windowful by windowful through the

document, and dragging the scroll box. These are described in the following sections.

There is also the automatic scrolling that takes place when the user drags the pointer

past the window boundary or types at the bottom of the window. To experience these

firsthand, try them out in an application such as MacWrite.

Scrolling with the scroll arrows

Clicking or pressing one of the scroll arrows lets the user see more of the document in

the direction of the scroll arrow, so the document seems to move in the opposite

direction. For example, when the user clicks the top scroll arrow, the document moves

down, bringing the top of the document into view. The scroll box moves in the

direction of the arrow being clicked.

Each click in a scroll arrow causes movement a distance of one unit in the chosen

direction, with the unit of distance being appropriate to the application: one line for a

word processor, one row or column for a spreadsheet, and so on. For smooth

scrolling, units within a document should always be the same size. Pressing the scroll

arrow causes continuous movement in its direction.

Scrolling by windowful

Clicking the mouse anywhere in the gray area of the scroll bar advances the document
by a windowful. The scroll box, and the document view, move toward the place where

the user clicked. Clicking below the scroll box, for example, brings the user the next

windowful toward the bottom of the document. Pressing in the gray area causes the

display of consecutive windowfuls until the user releases the mouse button, or until the

location of the scroll box catches up to the location of the pointer. Each windowful is

the height or width of the window, minus one unit overlap (where a unit is the distance

the view scrolls when the scroll arrow is clicked once), so that a little of the previous

information is shown as a reference point. Vertical scrolling by windowful can also be

done using function keys on some keyboards (see "Function Keys" for details).

50 Chapter 3: Specifications

Scrolling by dragging the scroll box

The scroll box shows the relative position, within the whole document, of the portion

of the document visible in the window. (The position of the scroll box has nothing to

do with the position of the pointer, which can be outside the window; or with the

position of the insertion point, which can be anywhere in the document.) If the scroll

box is halfway between the top and the bottom of the scroll bar, then the visible

portion of the document is halfway between the top and the bottom of the document.

To scroll the document, the user drags the scroll box. For example, to see the

beginning of the document, the user drags the scroll box to the top of the scroll bar.

If the user starts dragging the scroll box, and then moves the pointer a certain distance

outside the scroll bar, the scroll box stops following the pointer and snaps back to its

original position. If the user then releases the mouse button, no scrolling occurs. But if

the user, still holding down the mouse button, moves the pointer back into the scroll

bar, the scroll box again begins to move up or down with the pointer.

If a document has a fixed size (as in MacDraw, for example), and the user scrolls to the

right or bottom edge of the document, the application can display a light gray

background between the edge of the document and the window frame.

Some applications put the page number inside the scroll box so that the user can see

the page number change as the document scrolls.

Proportional scroll boxes

An interesting variation on scroll boxes is the proportional scroll box. Instead of

being a constant size, it starts out (in an empty document) filling the full length of the

vertical scroll bar, indicating that all of the document is visible in the window. Then,

as content is added to the document, the scroll bar shrinks proportionally (though it

never gets smaller than a minimum size). In other words, as the amount of the

document that the user can't see grows, the scroll bar's gray area grows too.

Scroll bars 51

Automatic scrolling

There are four instances when the application, rather than the user, scrolls the

document. These instances involve some potentially sticky problems about how to

position the document within the window after scrolling.

When the user reaches the edge of the window while entering information into the

document from the keyboard, scrolling happens automatically. The distance

scrolled depends on the kind of application: one line in a word processor, one field

in a data base or spreadsheet.

D When the user moves the pointer past the edge of the window while holding down
the mouse button, the window keeps up with the selection by scrolling automatically

in the direction the pointer has been moved. The rate of scrolling is the same as if

the user were pressing on the corresponding scroll arrow or arrows.

When the user performs an operation on a selection that isn't currently showing in

the window, it's usually because the user has scrolled the document after making the

selection. In this case, the application scrolls the window so that the selection is

showing before performing the operation. This makes it clear to the user what is

being changed.

When the application performs an operation whose side effect is to make a new
selection or move the insertion point, scrolling happens automatically. An
example is a search operation, after which the object of the search is selected. If the

new selection isn't already showing in the window, the application must scroll the

document to show it. Another example: after a paste operation, the insertion point

is after the end of whatever was pasted, which sometimes makes scrolling necessary.

The second and third cases present the same problem: where should the selection be

positioned within the window after scrolling? The primary rule is that the application

should avoid unnecessary automatic scrolling. Users prefer to retain control over the

positioning of a document. The following guidelines should be helpful:

If part of the new selection is already showing in the window, don't scroll at all. An
exception to this rule occurs when the part of the selection that isn't showing is more
important than the part that is showing.

D If scrolling in one orientation (either horizontal or vertical) is enough to reveal the

selection, don't scroll in both orientations.

D If the application is scrolling to a selection that is smaller than the window, position

the selection so that some of its context is showing on each side. It's better to put the

selection somewhere near the middle of the window than right up against the

corner.

Even if the selection is too large to show in the window, it might be preferable to

show some context rather than trying to fit as much as possible of the selection in

the window.

52 Chapter 3: Specifications

Splitting a window
Sometimes users want to see (and work on) two separate parts of a document

simultaneously. They can do this by splitting the window into independently

scrollable panes.

Applications that support splitting a window into panes place split bars at the top of

the vertical scroll bar or to the left of the horizontal one, or both (Figure 3-8). The user

can drag the split bar anywhere along the scroll bar. Releasing the mouse button

creates a new split bar at that location, splits the window there, and divides the

appropriate scroll bar into separate scroll bars for each pane.

<*l i

No split

O

o
MS

§n = h pi=

o

/-
o

o
si i* \o a

Horizontal split

Split line

Split line

O

01 1 ;i^l I T^a 0\ 1 i^or !: 1^

Vertical split

O

O
a

Both splits

Flgur© 3-8
Types of split windows

Split bar

Split bar

Splitting a window 53

After a split, there are separate scroll bars for each pane. The panes are still scrolled

together in the orientation of the split, but can be scrolled independently in the other

orientation. For example, if the split is vertical, then vertical scrolling (using the scroll

bar along the right of the window) is still synchronous; horizontal scrolling is

controlled separately for each pane, using the two scroll bars along the bottom of the

window (Figure 3-9).

Figure 3-9

Scrolling a split window

The panes scroll together
In the vertical orientation

The panes scroll independently
In the horizontal orientation

If the application allows only one split (one vertical and/or one horizontal split), the

split bar is moved to a new location along the scroll bar. If the application allows

multiple splits, the original split bar remains at the top or left end of the scroll bar,

and additional splits can be peeled off from it. To remove a split (to return the window
to a single pane), the user drags the split bar back to the top or end of the scroll bar.

Even when there are several panes, there is still only one selection or one insertion

point, which may appear in any number of the panes. If a change is made in one pane,

the change is reflected in all panes where that portion of the document is visible. If the

application has to scroll automatically to show the selection, the pane that should be

scrolled is the last one the user clicked in. If the selection is already showing in one of

the panes, no automatic scrolling takes place.

54 Chapter 3: Specifications

Panels

If the application divides a document window more or less permanently into different

areas, each having a different content, these areas are called panels. Unlike panes,

which show different parts of the same document but are functionally identical, panels

are functionally different from each other but might show different interpretations of

the same part of a document. For example, one panel might show a graphic version of

a document while another panel shows a text version, or one panel might show a

numeric representation of some data while another shows a graph based on the same

data.

Panels, like windows, can have scroll bars and can be split into more than one pane.

Whether to use panels instead of separate windows depends on the application.

Multiple panels in the same window are more compact than separate windows, but

they have to be opened, moved, and closed as a unit.

Controls, dialog boxes, and alerts

Selecting the single object of an operation and then choosing a menu command works

well whenever operations are simple and act on only one object. For those times when
a command requires more than one object or needs additional information before it

can be executed, the Apple Desktop Interface includes

dialog boxes, to allow the user to provide the needed additional information before

a command is executed

alerts, to notify the user whenever an unusual situation occurs

Because dialog and alert boxes often use controls, controls are described in this

section, even though they're also used in other kinds of windows.

Most dialog and alert boxes should be centered in the upper third of the screen,

whatever size screen they're displayed on. The exception to this is a dialog or alert box
whose placement is linked to something else on the screen, such as a dialog box that

appears with its default button in the same place as the menu item that brought up the

dialog box, allowing the user to click the button without moving the mouse.

Controls, dialog boxes, and alerts 55

Controls

To enhance the user's sense of direct manipulation, many of an application's features

can be implemented with controls: graphic objects that, when manipulated with the

mouse, cause instant action with visible or audible results. Controls also can change

settings to modify future actions.

There are many types of controls. Buttons, check boxes, radio buttons, and scroll

bars are all available from the Macintosh Toolbox. You can also design yOur own
controls, such as the thermometer and gauge shown in Figure 3-12.

Buttons

A button is a small screen object usually labeled with text (Figure 3-10). Clicking or

pressing a button performs the action described by the button's label. Button labels

should be unambiguous. Often, a label describing the result of pressing the button

(Erase, Revert, or Don't Save, for example) is clearer than just Yes, No, or OK. If one

button is the default button (that is, if pressing Return or Enter has the same result as

pressing this button), then it is doubly outlined to distinguish it from the other

buttons.

Buttons usually perform instantaneous actions, such as completing operations defined

by a dialog box or acknowledging error messages. They can also perform continuous

actions, in which case the effect of pressing on the button (rather than just clicking it)

would be the same as the effect of clicking it repeatedly.

Two particular buttons, OK and Cancel, are especially important in dialog and alert

boxes. They're discussed under "Dialog Boxes" and "Alerts" later in this chapter.

Button i J Default button

(Button 2~]

Figure 3-10
Buttons

Check boxes and radio buttons

Check boxes and radio buttons let the user choose among alternatives.

Check boxes act like toggle switches (comparable to the text attributes in the Style

menu). Use check boxes to indicate the state of an option that must be either off or on.

The option is on if the box is checked; otherwise it's off. The check boxes appearing

together in a given context are independent of each other—any number of them can

be off or on. In Figure 3-11, check boxes 1 and 2 are on; if a user clicked box 3, all

three boxes would be on.

56 Chapter 3: Specifications

Radio buttons typically occur in groups. They're called radio buttons because they

act like the buttons on a car radio. They're mutually exclusive—at any given time,

exactly one button in the group is on. Clicking one button in a group turns off

whichever button was on before. In Figure 3-11, radio button 2 is on; if a user clicked

button 3, button 2 would go off.

If more than one group of buttons is visible at one time, the groups must be made

distinct from one another.

Both check boxes and radio buttons are accompanied by text that identifies what each

button does.

E3 Check Boh 1 O Radio Button 1

K Check Boh 2 ® Radio Button 2

Check Boh 3 O Radio Button 3

Figure 3-11

Check boxes and radio buttons

Dials

A dial displays the value, magnitude, or position of something in the application or

system (Figure 3-12). Some dials also allow the user to alter that value. Dials are

predominantly analog devices, displaying their values graphically and sometimes

allowing the user to change the value by dragging an indicator. Dials may also have a

digital display.

The most common example of a dial is the scroll bar. The indicator of the scroll bar is

the scroll box that represents the relative position of the window over the whole length

of the document. The user can drag the scroll box to change that position.

\SE M
Figure 3-12
Dials

Controls, dialog boxes, and alerts 57

Dialog boxes

Commands in menus normaly act on only one object. If a command needs more

information before it can be performed, it presents a dialog box to gather the

additional information from the user. The user can tell which commands will use a

dialog box to get more information because these commands are followed by an

ellipsis (...) in the menu.

A dialog box is a rectangle that may contain text, controls, and icons. There should be

some text in the box that indicates which command caused the dialog box to appear

and what the function of the box is.

The user sets controls and fills text fields in the dialog box to provide the needed

information. When the application puts up the dialog box, it should set the controls to

some default setting and fill in the text fields with default values, if possible. One of the

text fields (the "first" field) should be highlighted, so that the user can change its value

just by typing in the new value. If all the text fields are blank, there should be an

insertion point in the first field.

In general, dialog boxes should be laid out with the most important information and

controls at the top left, working down to the less important information, ending with

the default button—the button most likely to be clicked—at the lower right. In Western

countries, people are used to reading and writing from left to right and top to bottom,

so this is the most natural way to fill in information.

Editing text fields in a dialog box should conform to the guidelines detailed under

"Editing Text" later in this chapter.

After editing an item, the user has two options:

a Pressing the Tab key accepts the changes made to the item and selects the next field

in sequence.

D Clicking in another field accepts the changes made to the previous item and selects

the newly clicked field.

Dialog boxes can be either modal or modeless.

A modal dialog box is one that the user must explicitly dismiss before doing anything

else, such as making a selection outside the dialog box or choosing a command.
Figure 3-13 shows an example of a modal dialog box.

58 Chapter 3: Specifications

A fire you sure you want to remoue the

application "Macintosh BASIC "?

[Cancel) [(
OK]]

Figure 3-13

A modal dialog box

Because it restricts the user's freedom of action, you should use this type of dialog box

sparingly. In particular, the user can't choose a menu item while a modal dialog box is

up and therefore can do only the simplest kinds of text editing. For these reasons, the

main use of a modal dialog box is when it's important for the user to complete an

operation before doing anything else.

A modal dialog box usually has at least two buttons: OK and Cancel. OK dismisses the

dialog box and performs the original command according to the information

provided. It can be given a more descriptive name than Yes or OK: "Start printing,"

for example. Cancel dismisses the dialog box and cancels the original command. It

should always be called Cancel.

A dialog box can have other kinds of buttons as well. These may or may not dismiss the

dialog box. The default button (the most likely choice in the current situation) is

doubly outlined to call attention to it. It is usually in the lower-right corner of the box.

In Figure 3-13, OK is the default button. The user can activate the default button simply

by pressing Return or Enter on the keyboard. If there's no default button, Return and

Enter have no effect and the user must dick in one of the screen buttons.

A spedal type of modal dialog box is one with no buttons. This type of box just

informs the user of a situation without eliciting any response. It usually describes the

progress of an ongoing operation, then disappears. Because it has no buttons, the

user has no way to control or dismiss it. It must remain on the screen long enough for

the user to read it.

A modeless dialog box allows the user to perform other operations without

dismissing the dialog box. Figure 3-14 shows an example of a modeless dialog box.

~n ^=Hm chanqe ==

Find te«t:

Change to:

Guide Lines

(Change all)guidelines

[(Change next
])

Figure 3-14
A modeless dialog box

Controls, dialog boxes, and alerts 59

A modeless dialog box is dismissed by clicking in the close box or by choosing Close.

The dialog box is also dismissed implicitly when the user chooses Quit. The

application should remember the contents of the dialog box after the box is

dismissed, so that when the application is opened again, the dialog box can be

restored exactly as it was.

Controls work the same way in modeless dialog boxes as in modal dialog boxes,

except that buttons never dismiss the dialog box. In this context, the OK button means

"go ahead and perform the operation, but leave the dialog box up," whereas the

Cancel button usually terminates an ongoing operation.

A modeless dialog box can also have text fields, which the user can edit with the

commands in the Edit menu.

Alerts

Every user is likely at one time or another to do something that an application can't

cope with. Applications occasionally have to call the user's attention to such things as

a loose mouse connection or lack of paper in the printer. Alerts let applications

respond to problems in a consistent way, and in stages according to the severity of the

problem, the user's expertise, and the particular history of the problem. The two kinds

of alerts are beeps and alert boxes.

Beeps

Beeps are used for errors that are both minor and immediately obvious. For example,

if the user tries to backspace past the left boundary of a text field, the application can

simply beep instead of displaying an alert box. So that people who can't hear don't

miss the message, all beeps should be accompanied by a flash (rapid inverting) of the

menu bar.

60 Chapter 3: Specifications

Alert boxes

An alert box resembles a modal dialog box (see Figure 3-13). The only way the user

can respond is by clicking buttons or by pressing Enter or Return. Alert boxes might

contain dials and buttons but usually not text fields, radio buttons, or check boxes.

Note the recommended general arrangement of the elements. The icon is at the left,

with the message text to the right. The buttons are below the message, with the default

button, boldly outlined, at the lower right. The default is the likeliest or safest

response, and can be chosen by simply pressing Return or Enter.

The way to be sure the default button is really "safe" is to word the message carefully.

Messages in alert boxes must be brief, informative, and friendly without being

misleading. If the alert is warning the user of a serious situation, it must be made
clear—not hidden in a polite phrase. Messages should be phrased so that the user can

easily answer them, and the wording should reflect the user's point of view, not the

programmer's. Figure 3-15 shows an example.

A Are you sure you want to

erase all changes to your

document?

Figure 3-15
A typical alert box

There are three classes of alert boxes, each for a different kind of situation and each

having its own icon (Figure 3-1 6).

Note. Provides information about situations that have no drastic effects. The user

usually responds by pressing an OK button.

Caution. Calls attention to an operation that may have undesirable results if it's

allowed to continue. The user is given the choice to continue or not.

Stop. Calls attention to a serious problem that requires the user to choose from

alternative courses of action.

ID A ©
Note Caution Stop

Figure 3-16
Alert box icons

Controls, dialog boxes, and alerts 61

An application can define different responses for each of several stages of an alert, so

that if the user persists in the same mistake, the application can issue increasingly

helpful (or increasingly stern) messages. A typical sequence is for the first two

consecutive occurrences of the mistake to result in a beep, and for subsequent

occurrences to result in an alert box. This type of sequence is especially appropriate

when the mistake is likely to be accidental (for example, when the user chooses Cut

when there's no text selection).

How the buttons in an alert box are labeled depends on the nature of the box. If the

box presents the user with a situation in which no alternative actions are available, the

box has a single button that's labeled OK. Clicking this button means "I've read the

alert." If the user is given alternatives, then typically the alert is phrased as a question

that can be answered Yes or No. In this case, buttons labeled Yes and No are

appropriate, although variations such as Save and Don't Save are also acceptable. OK
and Cancel can be used, as long as their meanings aren't ambiguous.

Generally, it's better to be polite than abrupt, even if it means lengthening the

message. The role of the alert box is to be helpful and make constructive suggestions,

not to give orders. But its focus is to help the user solve the problem, not to give an

academic (no matter how interesting) description of the problem itself. It's important

to phrase messages in alert boxes so that users aren't left guessing the real meaning.

Make alert messages self-explanatory. The user should never have to refer to a manual
or reference card to find out what an alert message means. Test your alert messages to

be sure they tell the user exactly what needs to be done.

The best way to make an alert message understandable is to think carefully through the

error condition itself. Can the application handle this without an error? Is the error

specific enough so that the user can fix the situation? What are the recommended
solutions? Can the exact item causing the error be displayed in the alert message?

62 Chapter 3: Specifications

Desk accessories

A desk accessory is a program with a relatively limited scope that can be opened while

another application is running. Desk accessories can be created to perform a wide

range of functions. Some imitate useful objects found on real desktops—the standard

Macintosh Note Pad, Alarm Clock, and Calculator, for example. Some (the Chooser,

for example) are file- or network-related utilities that users may need to access from

within a number of different applications. Some are specific to an application or type

of application, such as rulers and other graphics tools that are available only in

graphics applications, and spelling checkers that are needed only when a word
processing application is being used. There are also "idle" programs that blank out the

screen or display special graphics after the computer has been idle for a specified

period of time. Figure 3-17 shows some desk accessories on a desktop.

Note Pad

Things to do this week

see Smith re sales meeting

birthday card to Dame
get insurance quote

change oil

Puzzle

a©

a

D Calculatoi

B4

flfl

aaaa
CDQLDtD

loan
E3QU

Figure 3-17
Some desk accessories

Desk accessories 63

The user can quickly open one or more desk accessories by choosing them from the

Apple menu. Generally, all installed desk accessories can be accessed from the Finder

or from any other application, except for desk accessories specific to a particular

application or type of application.

Don't design a full-scale application and implement it as a desk accessory. If it's really

an application, treat it as an application. Remember that there is a limit on the

number of desk accessories that can be installed at one time. On the other hand, if

your application is a relatively small one that is useful in a variety of situations,

consider making it a desk accessory.

Desk accessories don't have to be windows, but desk accessories that are windows

should behave like windows. The user should be able to move them around the screen

and dismiss them by clicking a close box.

A desk accessory can add one (and only one) menu to the application's menu bar.

This menu goes away when the desk accessory is closed. Desk accessories should never

interfere with the application's menus.

If possible, let users install and remove all desk accessories in one standard way. Users

should be able to install all Macintosh desk accessories with the standard Font/DA

Mover rather than with a special installation program.

All applications should treat desk accessories in a standard way. If a desk accessory

opens a window, that window should remain open on the desktop until the user

explicitly closes it or quits the current application. The principle "the user is in

control" suggests that an application should not close desk accessories just because the

user opens or closes document windows. When help systems are implemented as desk

accessories, for example, the user can open and close document windows without

losing the help window.

There's more on desk accessories under the heading "The Apple Menu" in this

chapter.

64 Chapter 3: Specifications

Menus
Menus make it possible for the user to browse through and choose among the whole

range of available operations. The standard menu structure consists of the menu bar

(which displays the menu titles), the menus, and each menu's items (commands).

The menu bar

The menu bar extends across the top of the screen and displays the title of each

available menu (Figure 3-18).

Menu bar

Titles of enabled
menus

Titles of disabled
menus

« Tile Edit

Figure 3-18

Menu bar

If the user moves the pointer to the Edit portion of the menu bar and presses the mouse
button, the Edit menu appears, as shown in Figure 3-19. A menu becomes visible when
the user selects it by pressing its title.

Nothing but menu titles can appear in the menu bar. Menu titles should remain

constant within a given application. If all the operations in a given menu are currently

disabled (that is, the user can't choose them), the menu title should be dimmed
(drawn in gray) but should remain visible in the menu bar. The user must always be

able to pull down the menu and see the names of the operations even when none of

them can, at the moment, be chosen.

Menu with eight

menu Items (two
are dividing lines)

Figure 3-19
Menu

Search Format Font Style

Menus 65

Menu items

Menu items should be either verbs or adjectives. Use verbs (or verb phrases) to show

the user what can be done—Copy, Find, and Show Page, for example. Use adjectives

(or adjective phrases) to let the user specify an attribute of a selected object—Chicago

[font], Underline, and Double Space, for example. Adjectives in menus imply

actions—think of "Chicago" as shorthand for "change the selected text to Chicago

font." Menu items usually apply to the current selection, although some may apply to

the whole document or window.

When you're designing an application program, don't assume that everything has to

be done through menus. Menus are often the best method, but sometimes it's more

appropriate for an operation to take place as a result of direct user manipulation of a

graphic object on the screen, such as a control or icon. Alternatively, a single menu
item can start to execute complicated instructions by bringing up a dialog box for the

user to fill in.

Choosing a menu item

To choose a menu item, the user positions the pointer over the menu's title in the

menu bar, and presses the mouse button. The application highlights the title and

displays the menu.

While holding down the mouse button, the user drags the pointer through the menu.

Each menu item is highlighted in turn. When the user releases the mouse button, the

operation that's highlighted is chosen. As soon as the mouse button is released, the

menu item blinks briefly, the menu disappears, and the operation is executed. The
menu title in the menu bar remains highlighted until the operation is completed.

Nothing actually happens until the user chooses the operation. The user can look at

any of the menus without making a commitment to do anything. The user can also

move the pointer all over the screen (except back into the menu bar) without losing

sight of the menu, as long as the mouse button is pressed. To close a pull-down menu
without choosing an operation, the user simply returns the pointer to the menu bar or

moves it away from the menu, then releases the button.

66 Chapter 3: Specifications

Appearance of menu items

The items in a particular menu should be logically related to the title of the menu.

Menu items must be terse, preferably one word with the first letter capitalized. If it's

necessary to use more than one word (Save As or Page Setup, for example), capitalize

all important words in the name. In addition to the names, three features of menus

help the user understand what each item does: grouping, toggles, and special visual

features.

Grouping operations in menus

The most frequently used operations should be at the top of a menu. The least

frequently used (such as Quit) should be at the bottom.

As already mentioned, there are two kinds of menu items: actions (verbs) and

attributes (adjectives). An attribute stays in effect until it's canceled, whereas an action

ceases to be relevant after it has been performed. A single menu can contain both

actions and attributes, but the actions should be grouped together and the attributes

grouped together. The groups are separated by dotted lines (the dotted lines are

actually disabled menu items that are "named" with a horizontal line; Figure 3-22

illustrates these visual features of menus).

Another reason to group operations is to break up a menu so it's easier to read.

Operations grouped for this reason are logically related, but independent. Operations

that are actions are usually grouped this way, such as Cut, Copy, Paste, and Clear in

the Edit menu.

Attribute operations that are interdependent are grouped, either as mutually exclusive

groups or as accumulating groups.

In a mutually exclusive attribute group, only one item in the group is in effect at any

one time. The item that's in effect is preceded in the menu by a check mark. If the user

chooses a different item in the group, the check mark is moved to the new item. An
example is the Finder's View menu, in which only one view at a time can be in effect

(Figure 3-20). (Radio button controls, in which pressing one button in a group disables

all the others, are also examples of mutually exclusive attribute groups.)

Menus 67

by Small Icon

•/by Icon

by Name
by Date

by Size

by Kind

Figure 3-20

View menu

In an accumulating attribute group, any number of attributes can be in effect at the

same time. One of the items in the group cancels all the others. An example is the

standard Style menu, in which the user can choose any combination of Bold, Italic,

Underline, Outline, or Shadow—but Plain Text cancels all the others. (Check-box

controls, in which all, none, or any other number of the boxes may be in effect at a

time, are also examples of accumulating attributes.)

Toggled menu items

Another way to show the presence or absence of an attribute is with a toggled

operation. A toggled attribute has two states, and a single menu item allows the user to

"toggle" between the states. You can show the user that an operation is toggled either

with check marks or by changing the wording.

Here's an example of changing the wording in a toggled menu item. When rulers are

showing in a program that uses rulers, one item in the Format menu is Hide Rulers. If

the user chooses this item, the rulers are hidden, and the name changes to Show Rulers

(Figure 3-21). Use this technique only when the wording of the items makes it obvious

that they're opposite states of the same attribute—it's better to use verbs (Turn

on.../Turn off... or Hide.../Show...) rather than nouns for this sort of menu item.

Undo and Redo is another good example.

Open Header
~

Open Footer

Display Header
Display Footer

Set Page #...

Insert Page Break
JJltePage ____.—

Open Header *
Open Footer

Display Header
Display Footer

Set Page #...

Insert Page Break
JillePage ______

Figure 3-21

Toggled operations

68 Chapter 3: Specifications

Special visual features

In addition to the way menu items are name and grouped, menus have other features

that provide added information:

An ellipsis (...) after a menu item means that after the item is chosen, the user will be

asked for more information before the operation is carried out. Usually, the user

must fill in a dialog box and click an OK button or its equivalent. Don't use the

ellipsis when the dialog box that will appear is merely a confirmation or warning

(for example, "Save changes before quitting?").

D Check marks indicate attributes that are currently in effect.

Any menu items that the user can't choose at the moment are displayed in gray

letters. If the user moves the pointer over a dimmed item, that item isn't

highlighted.

a If an item has a keyboard equivalent (if it can be chosen from the keyboard as well as

from a menu), its name in the menu is followed by the Apple (or cloverleaf) symbol

and a character. To choose an item this way, the user presses the character key while

holding down the Apple (Command) key.

Figure 3-22 illustrates these features.

Several other menu features are also supported:

D In the Style menu only, menu items can be shown in Bold, Italic, Outline,

Underline, or Shadow, to illustrate the text styles themselves.

A menu item can be preceded by a special character such as V or (to indicate

which item is in effect). Icons can also appear in menus, but because of their size

they require two menu lines.

D Applications can have special kinds of menus for special situations. A pull-down

menu can even be a palette that can be "torn off the menu bar and moved around

the screen (Figure 3-23). See "Palettes" later in this chapter.

Menus 69

New
Open...

96 Nv

960 r

96S

Close

Saue
Saue As...

Reuert to Saued

Page Setup.

Print...

Quit 3€Q

Keyboard equivalents

Commands followed by ellipses

require additional Information

from the user

Uniii)

iut
Copy
l>HSl«

Clear

Select nil

::v

SSH

#IJ

96R

Show Clipboard

Dimmed commands
can't be chosen

by Small Icon

•by Icon

by Name
by Date

by Size

by Kind

Check mark shows current setting

Figure 3-22
Visual features of menus

None R^^}///^]

ilWm

SI

;. ;.;.;<

Figure 3-23

A pull-down palette

70 Chapter 3: Specifications

Scrolling menus

If a menu becomes too long to fit on the screen, an indicator appears at the bottom of

the menu to show that there are more items (Figure 3-24). When the user drags over the

indicator, the menu scrolls to show the additional items. When the last item is shown,

the indicator disappears.

New Vork

Palatino

Symbol
Times

Palatino

Symbol
Times

Uenice

Zapf Dingbats

Figure 3-24

Scrolling menu Indicator at bottom of menu

As soon as the menu starts scrolling, another indicator appears at the top of the menu
to show that some items are now hidden in that direction (Figure 3-25).

Athens a
fluant Garde Bookman
Bookman Chicago

Chicago Courier

Courier _ Geneua

Figure 3-25

Scrolling menu indicator at top of menu

If the user drags back up to the top, the menu scrolls back down in the same manner. If

the user lets go of the mouse button or selects another menu, and then selects the

original menu again, it appears in its original position, with the hidden items and the

indicator at the bottom.

Menus 71

Keyboard equivalents for menu items

There are several menu items, particularly in the File and Edit menus, that commonly

have keyboard equivalents. Keyboard equivalents are provided for people who prefer

to keep their hands on the keyboard instead of using a pointing device to choose

operations from menus.

The letter used for a keyboard equivalent should be mnemonic—it should either be the

first letter of the command (or of an important word in the command), or it should

have some other relevance (X for Cut, for example) so that the user can remember it.

Keyboard equivalents are case independent. In other words, both Apple-S and Apple-

s mean Save. The keyboard equivalents are shown in the menus as capital letters for

consistency and aesthetics. The keyboard equivalent for Help in the Apple menu is

shown as Apple-?, but it doesn't actually require that the Shift key be pressed.

Modifier-key combinations other than the ones listed here should also be case

independent.

For the sake of consistency, several of the available keyboard equivalents should be

used only for the operations listed below and should never be used for any other

purpose.

Apple menu

Apple-? Help

File menu

Apple-N New

Apple-O Open

Apple-S Save

Apple-Q Quit

Edit menu

Apple-Z Undo

Apple-X Cut

Apple-C Copy

Apple-V Paste

72 Chapter 3: Specifications

Many desk accessories (which are accessible from all applications) use the Clipboard

and must be able to depend on the keyboard equivalents for Undo, Cut, Copy, and

Paste.

The keyboard equivalent for Quit is important in case there's a mouse malfunction.

The user can still leave the application in an orderly way (with a dialog box that accepts

the Return key as a Yes response), saving any changes made to documents since the

documents were last saved.

Note that the Edit menu's four reserved letter keys are in close proximity to each other

and to the Apple key, allowing easy one-hand operation.

The keyboard equivalents in the Style menu are less strictly reserved. Applications that

have a Style menu shouldn't use these keyboard equivalents for any other purpose, but

applications that have no Style menu may use them for any purpose. Remember that

you risk confusing users if a given key combination means different things in different

applications.

Style menu

Apple-P Plain text

Apple-B Bold

Apple-I Italic

Apple-U Underline

Interrupting an operation

One other reserved Apple-key combination is not a keyboard equivalent for a menu
item. Apple-period (Apple-.) is used to stop the current operation before it

completes. The Escape key, on keyboards that have it, does the same thing.

Menus 73

The standard menus
Three menus, the Apple, File, and Edit menus, appear in almost every application.

The Font, FontSize, and Style menus, which affect the appearance of text, appear only

in applications in which they're relevant.

The Apple menu

Desk accessories are mini-applications that are always available, via the Apple menu,

while the Finder or any other application is in use. The list of installed desk accessories

is usually alphabetized (Figure 3-26).

About MacPaint.

Alarm Clock

Calculator

Control Panel

Key Caps
Note Pad
Puzzle

Scropbook

Figure 3-26
The Apple menu

Only those desk accessories installed in the current System file can appear in the Apple

menu. There are some desk accessories that are linked to a particular application—for

example, spelling checkers that appear in the Apple menu only when a word
processing application is active. The list of desk accessories is expanded or reduced

according to what's available. There can be more than one accessory on the desktop at

one time, as shown in Figure 3-27.

74 Chapter 3: Specifications

Note Pad

Things to do this week

see Smith re sales meeting

birthday card to Darnell

get insurance quote

change oil

Puzzle

a

D Calculator

a«

aa

totoaa
LDCDtDCa
coso
CDLoan

Figure 3-27

Some desk accessories

The Apple menu also contains the About... menu item. Choosing this item brings up a

dialog box with the name, version number, and copyright information for the current

application, as well as any other information the application developer wants to

display. The Help item is also commonly in the Apple menu. In some applications,

the Help and About... functions are combined in one menu item.

The File menu
The File menu lets the user perform certain simple filing operations without leaving the

application and returning to the Finder (Figure 3-28). It also contains Print and Quit.

All of these operations are described below.

New
Open..

36N

3€0

Close

Saue 3SS

Saue Rs...

Reuert to Saued

Page Setup.

Print...

Quit 3€Q

Figure 3-28
Standard File menu

The standard menus 75

New

Opens a new, untitled document for the current application. The user names the

document the first time it's saved. New is disabled when the maximum number of

documents allowed by the application is already open.

Open

Opens an existing document. A dialog box lets the user select which document. This

dialog box shows a list of all the documents on the disk whose name is displayed that

can be handled by the current application (Figure 3-29 and Figure 3-30). Which dialog

box appears depends on the file system on the disk. With the Macintosh File System

(MFS), used on 400K disks, all the documents are displayed together in one list;

folders are ignored.

Open 1 Disk name

[Eject]

letter

March Figures

Marketing

messages
New Totals

Old Totals 9

K

i
Cancel

] [Driue]

Figure 3-29

MFS Open dialog box

With the Hierarchical File System (HFS) on the Macintosh, the user, when opening a

document, can browse through all levels of folders, forward and backward. The Eject

and Drive buttons allow the user to look at documents on another disk or to eject a

disk. When no disk is available to look at or to eject, these buttons are dimmed.

€3 maps

CD Africa Middle East

O Europe
CD Latin America
CD N America

O

a HD20

[
Ej«(<

]

[Driue
]

[Open
]

Cancel
]

Figure 3-30
HFS Open dialog box

76 Chapter 3: Specifications

Using Open from an application, the user can open only a document that can be

processed by that application. To open a document that can be processed only by

some other application, the user must ordinarily leave the application and return to

the Finder. Using Open from the Finder, the user can open any document—the

appropriate application is automatically opened as well.

When an application starts up by putting an empty untitled document on the screen,

the Open option can remain enabled (not dimmed) even if the application allows

only one open document at a time. In this case, choosing Open from the File menu
simultaneously closes the empty document (why save an empty document?) and

opens another.

Close

Closes the active window, which may be a document window, a desk accessory, or any

other type of window. Clicking in a window's close box is the same as choosing Close.

When the user chooses Close, and the active document has been changed since

the last save, the Close dialog box appears, asking "Save changes before closing?"

A great deal of work can be lost if a user mistakenly clicks No instead of Yes. To
avoid confusion, all applications should use the same standard Close dialog box
(Figure 3-31). This is especially important to users who often move from one

application to another and become less aware of subtle differences between

applications.

Figure 3-31

Standard Close dialog box

Yes and No, the two direct responses to the question, are placed together on the left

side of the box. Yes is the default button. Cancel, which cancels Close, is to the right,

separate from Yes and No.

The text of the question is generally "Save changes before closing?" but if the user sees

this message after choosing Quit, the text would instead be "Save changes before

quitting?" If the application supports multiple windows, the text is "Save changes to

[document name] before closing?" Regardless of the text of the question, the box

should always look the same and appear in the same place on the screen.

The standard menus 77

Save

Lets the user save the active document to a disk, including any changes made to that

document since the last time it was saved. The document remains open. Users

appreciate seeing, at this point, a message telling them the document is indeed being

saved.

If the user chooses Save for a new untitled document (one the user hasn't named yet),

the application presents the Save As dialog box (described next). This dialog box

allows the user to name the document and choose where it will be saved before the

application continues with the save. The active document remains active.

If there's not enough room on the disk to save the document, the application says so.

The application then suggests that the user can choose Save As instead, to save the

document on another disk.

Save As

Saves a copy of the active document under a new name provided by the user. When the

user opens a document, makes changes to it, and then chooses Save As, the changes

are not made to the original document. The changed version of the document is saved

under the new name. The active document is no longer the one the user opened, but

rather the new one with the new name.

If no changes had been made to the original document when Save As was chosen, then

there are two identical documents having different names.

In applications that support stationery, the Save As dialog box includes a Stationery

option. A document that is saved as stationery becomes a template containing

whatever information was in the original document. Figure 3-32 shows a Save As dialog

box with a Stationery option.

|€3 Memo$|

Q B-1«l Office pi mis

Q B 2A El oh

O

D B SO Status report

D 9-1 staff mtg
D 9-2 party wmouncem
D 9-2 Sue-budget* o
Saue as:

Memo

aHD 20

[tlrit'e "]

[Saue
~~)

[Cancel
)

O Standard <•) Stationery O TEKT

Figure 3-32
A Save As dialog box

78 Chapter 3: Specifications

If stationery called "Memo" is opened, a document with the default name "Memo #1"

is opened (then "Memo #2" and so on). When this document is saved, the Save As

dialog box appears again, so that the user can rename the document if desired.

Revert to Saved

Discards all changes made to the active document since the last time it was saved or

opened. The document on disk is reopened. Before all this happens, a dialog box lets

the user confirm that this is what he or she really wants. (This follows the principles

that users should be allowed to make informed decisions and to change their minds.)

Figure 3-33 shows a Revert to Saved dialog box.

Reuert to the last uersion

saued?A
Caution

[cancel] (T OK

Figure 3-33
A Revert to Saved dialog box

Page Setup

Lets the user specify printing parameters such as the paper size and printing

orientation (different applications will provide different options as needed). These

parameters are saved with the document when the document is saved. Figure 3-34

shows a Page Setup dialog box.

LaserWriter

Paper: ® US Letter O R4 Letter

O US Legal O B5 Letter

Orientation

tE

Reduce or

Enlarge:
rm

Printer Effects:

H Font Substitution?

G3 Smoothing?

Figure 3-34
A Page Setup dialog box

The standard menus 79

Print

Lets the user specify various parameters, such as print quality and number of copies,

and then prints the document. The parameters apply only to the current printing

operation and are not saved with the document. Figure 3-35 shows a Print dialog box.

Print...

Copies: Q| Pages: ® fill O From:

Couer Page: ® No O first Page O Last Page

Paper Source: (5) Paper Cassette O Manual Feed

fu:

[Cancel^

[Help]SI
Figure 3-35

A Print dialog box

Quit

Lets the user leave the application and return to the Finder. If any open documents

have been changed since the last time they were saved, the application presents the

"Save changes?" dialog box, once for each open document.

The Edit menu

There are two important principles behind the Edit menu:

Anything the user can do, the user can also undo.

Data can easily be moved from one part of a document to another part, from one

document to another, and even between documents that are created by different

applications or desk accessories. The Clipboard, a holding area for text or

graphics, makes this possible.

The Edit menu allows access to the operations that cut, copy, and paste selections, as

well as to Undo, Select All, and Show Clipboard. You can add other items to the Edit

menu if your application requires them—and if they're related to the standard items

already there.

All applications should support Undo, Cut, and Paste. This requires that the first five

lines in the Edit menu be exactly as shown in Figure 3-36: Undo followed by a dotted

line, then Cut, Copy, Paste, and Clear. Consistency in this menu is important even if

your application doesn't itself make use of Undo, Cut, and Paste—these features are

available to desk accessories only through the Edit menu.

80 Chapter 3: Specifications

U2J
Undo 362

Cut 3€H

Copy 3€C

Paste sen

Clear

Select All

Show Clipb Dard

Figure 3-36

Standard Edit menu

The Clipboard

The Clipboard holds whatever is cut or copied from a document. Its contents stay

intact when the user changes documents, opens a desk accessory, or leaves the

application. An application can show the contents of the Clipboard in a window and

can choose whether to have the Clipboard window open or closed when the

application starts up.

The Clipboard window looks like a document window. The user can see its contents but

cannot edit them. In other respects, the Clipboard window behaves like any other

window.

Every time the user performs a Copy on the current selection, a copy of the selection

replaces the previous contents of the Clipboard. The previous contents of the

Clipboard remain available in case the user chooses Undo.

The Clipboard is available to all applications that support Cut, Copy, and Paste. The
user can see the Clipboard window by choosing Show Clipboard from the Edit menu.

If the Clipboard window is already showing, the user can hide it by clicking the close

box or choosing Hide Clipboard from the Edit menu. (Show Clipboard and Hide

Clipboard are a single toggled item.)

Because the content of the Clipboard doesn't change when the user moves from one

application to another, or when the user opens a desk accessory, the Clipboard is used

for transferring data among compatible applications and desk accessories.

If the Clipboard file is moved from one disk to another, the contents move with it,

replacing any existing Clipboard file on the target disk.

The standard menus 81

Undo

The Undo menu item reverses the effect of the previous operation. Not all operations

can be undone. The application determines which operations can be undone. The

general rule is that operations that change the contents of the document can be

undone, whereas operations that don't change the contents of the document cannot

be undone.

Most menu items (whether chosen from the menu or by a keyboard equivalent) can be

undone. A typing sequence (any sequence of characters typed from the keyboard or

numeric keypad, including Backspace, Return, and Tab, but not including keyboard

equivalents of menu items) can also be undone.

Operations that can't be undone include selecting, scrolling, and splitting the window
or changing a window's size or location. None of these operations interrupts a typing

sequence. For example, if the user types a few characters and then scrolls the

document, an Undo operation doesn't undo the scrolling but does undo the typing.

Whenever the location affected by the Undo operation isn't currently showing on the

screen, the application should scroll the document so the user can see the effect of the

Undo.

The actual wording of the Undo line, as it appears in the Edit menu, is Undo Typing or

Undo Cut—whatever the last undoable operation was. If the last operation can't be

undone, the line reads simply Undo and is dimmed to indicate that it's disabled.

Figure 3-37 illustrates Undo and Redo in an Edit menu.

Undo Typing MZ

Cut

Copy
Paste

Clear

Select Rll

3€H

Show Clipboard

T21

Cut 96K

Copy 9SC

Paste 3SU

Clear

Select Rll

Show Clipboard

Figure 3-37
Undo and Redo in an Edit menu

If the last operation was Undo, the menu item is Redo xxx, where xxx is the operation

that was undone. If the user chooses Redo, the Undo is undone.

The Apple-Z key combination is reserved as a keyboard substitute for Undo/Redo in

the Edit menu and should be used for no other purpose.

82 Chapter 3: Specifications

Cut

The user chooses Cut either to delete the current selection or to move it. A move is

eventually completed by choosing Paste.

When the user chooses Cut, the application removes the current selection from the

document and puts it in the Clipboard, replacing the Clipboard's previous contents.

The place where the selection used to be becomes the new selection; the visual

implications of this vary among applications. For example, in text, the new selection

is an insertion point; in an array, it's an empty but highlighted cell. If the user chooses

Paste immediately after choosing Cut, the document is just as it was before the Cut.

The Apple-X key combination is reserved as a keyboard substitute for the Cut

operation in the Edit menu and should be used for no other purpose.

Copy

Before copying something, the user must first select it. Copy puts a duplicate of the

selection in the Clipboard, but the selection also remains in the document. The user

can then move the insertion point and choose Paste to insert the Clipboard's contents

somewhere else.

The Apple-C key combination is reserved as a keyboard substitute for Copy in the Edit

menu and should be used for no other purpose.

Paste

Paste is the last stage of a move or copy operation. It inserts the contents of the

Clipboard into the document, replacing the current selection. If there is no current

selection, it's inserted at the insertion point. The user can choose Paste several times

in a row to paste multiple copies. After a paste, the new selection is the object that was

pasted, except in text, where it's an insertion point immediately after the pasted text.

The Clipboard remains unchanged.

The Apple-V key combination is reserved as a keyboard substitute for Paste in the Edit

menu and should be used for no other purpose.

Clear

When the user makes a selection and then either chooses Clear from the Edit menu or

presses the Backspace key (Delete key on some keyboards) or the Clear key, the

application deletes the highlighted selection. Unlike Cut and Copy, the Clear

operation does not put the selection in the Clipboard. The Clipboard is unchanged
and the new selection is the same as it would be after a cut.

The standard menus 83

Select All

Select All selects every object in the document. In a word processing application,

Select All selects every character as well as all graphics in the document (making it very

easy to reformat or copy an entire document).

Show Clipboard

Show Clipboard is a toggled item. When the clipboard isn't displayed, the menu lists

Show Clipboard. If the user chooses Show Clipboard, the clipboard window is

displayed and the wording in the menu changes to Hide Clipboard.

Font-related menus

Three standard menus affect the appearance of text. The Font menu lets the user

determine the font of a text selection or of the characters about to be typed. The

FontSize menu lets the user determine the size, in points, of the characters. The Style

menu lets the user determine such aspects of the text's appearance as boldface, italic,

and so on.

A font (also often called a typeface) is a set of typographical characters created with a

consistent design. All the characters in a font share such features as the thickness of

vertical and horizontal lines, the degree and position of curves, and the use or

absence of serifs. Serifs are fine lines added to the main strokes of a letter. The text of

this book is set in various sizes and styles of a serif font. The section headings in this

book, on the other hand, are set in a sans serif font, which has no serifs. The
characters in a font can appear in many different point sizes, but all have the same
general appearance, regardless of size. Because fonts can be either fixed-width or

proportional, an application can't make assumptions about exactly how many
characters will fit in a given area.

Font menu

The Font menu lists the fonts that are currently available. A check mark indicates which

font is currently in effect. Figure 3-38 illustrates a font menu with some common
Macintosh fonts.

84 Chapter 3: Specifications

Rthens

Chicago
Geneua
London
Monaco

•New Vork

Uenice

Figure 3-38

Font menu with some common Macintosh fonts

FontSize menu

Font sizes are measured in points. A point is a typographical unit of measure

equivalent to 1/72 inch. The FontSize menu lists the nine standard available sizes. The

font size currently in effect is indicated with a check mark (Figure 3-39). Not every font

is available in all sizes; the sizes that are available for the selected font are shown
outlined in the FontSize menu. A font can be scaled to the other sizes, but scaled fonts

usually suffer in appearance on the screen and when printed by some kinds of printers.

This sentence is in 10-point type. The chapter title on the first page of this chapter is in

18-point type.

9 point

10

•D8
14

18

24
36

48

72

Figure 3-39
FontSize menu with standard font sizes

If there's insufficient room in the menu bar for the word FontSize, it can be

abbreviated to Size. If there's insufficient room for both a Font menu and a Size menu,

the sizes can be put at the end of the Style menu.

The standard menus 85

Style menu

Text-oriented applications, such as word processing programs, have a Style menu
(Figure 3-40).

•Plain Text 3€P

Bold 8€B

Italic 3€l

Underline 3€U

EtEQOQlLQ

Figure 3-40

Standard Style menu

The operations in the standard Style menu are Plain Text, Bold, Italic, Underline,

Outline, and Shadow. Others that can be included here are superscript, subscript,

small caps, uppercase, and lowercase. All except Plain Text are accumulating

attributes. This means that the user can choose all of them, none of them, or any

combination of them. It is important that each attribute can be individually toggled on

and off. The user who has accumulated several attributes—bold, italic, and underline,

for example—and decides to eliminate bold and italic but keep underline, shouldn't

have to choose Plain (which would turn off all three) and then start over by choosing

underline.

An attribute that's in effect for the current selection is preceded, in the Style menu, by
a check mark. The absence of the check mark indicates that the attribute is not in effect

for the current selection. Choosing Plain Text cancels all the other choices.

Other menus use plain 12-point Chicago for their text, but the Style menu can be self-

documenting by using, for example, shadowed 12-point Chicago to list the shadowed
attribute. Apple-key combinations can be used as keyboard shortcuts to the Style

menu.

86 Chapter 3: Specifications

Special menu types

This section discusses four alternate types of menus: hierarchical menus, pop-up
menus, graphic menus called palettes, and a hybrid of palettes and pull-down menus
called tear-off menus.

Hierarchical menus

Hierarchical menus are a logical extension of the standard menu metaphor: another

dimension is added to a menu, so that a menu item can be the title of a submenu.

When the user drags the pointer through a hierarchical menu item, a submenu appears

after a brief delay.

Hierarchical menu items have an indicator at the right edge of the menu, as shown in

Figure 3-41.

Font

Size

•Align Left 3€L

Rlign Middle 3SM
Rlign Right 3€R

Justify 3€J

•Single Space
1-1/2 Space
Double Space

•Rlign Left

Rlign Middle

Rlign Right

Justify

5L

9€J

Underline

EtEGOOlBS

QfrEKDaUD

•Single Space
1-1/2 Space
Double Space

Figure 3-41

Main menu before and after a submenu appears

One main menu can contain both standard menu items and submenus; both levels

can have Command-key equivalents. (The submenu title can't have a Command-key
equivalent, of course, because it's not a command. Key combinations aren't used to

pull down menus.)

Two delay values enable submenus to function smoothly, without jarring distractions

to the user. The submenu delay is the length of time before a submenu appears as the

user drags the pointer through a hierarchical menu item. It prevents flashing caused by

rapid appearance-disappearance of submenus. The drag delay allows the user to drag

diagonally from the submenu title into the submenu, briefly crossing part of the main

menu, without the submenu disappearing (which would ordinarily happen when the

pointer was dragged into another main menu item). This is illustrated in Figure 3-42.

Special menu types 87

Style \
•Align Left \ l€L

filign Middle\|€N
Align Right

Justify

•Single Space
1-1/2 Space

Double Space

[psDlBQ

a®

•as
no
AS

36

48

72

Figure 3-42

Dragging diagonally to a submenu item

Other aspects of submenus—menu blink, and so forth—behave exactly the same way
as in standard menus.

Using standard menus, the user can drag the mouse across the menu bar and

immediately see all of the choices currently available. Although this isn't true when
hierarchical menus are used, it's important that this original capability be maintained

as much as possible. To keep this essential simplicity and clarity, these guidelines

should be followed:

Hierarchical menus are used only for lists of related items, such as fonts or font

sizes (in this case, the title of the submenu clearly tells what the submenu contains).

Only one level of hierarchical menu is used. This one extra layer of menus
potentially increases by an order of magnitude the number of menu items that can

be used; more layers than this can make an application very confusing.

Pop-up menus

Another type of menu is a pop-up menu. A pop-up menu isn't in the menu bar, but

appears somewhere else on the screen (usually in a dialog box) when the user clicks in

a particular place.

88 Chapter 3: Specifications

Modem setup.

Baud rate: 300

Bits per character:
|

7
|

Stop bits:
[

1 |

Parity:
|

Euen~~|

(Cancel
) | OK |

Figure 3-43

A dialog box with pop-up menus

Pop-up menus are used for setting values or choosing from lists of related items. The

indication that there is a pop-up menu is a box around the current value, with a one-

pixel-thick drop shadow (Figure 3-43). When the user presses on this box, the pop-up

menu appears, with the current value—checked and highlighted—under the pointer

(Figure 3-44). If the menu has a title, the title highlights while the menu is visible.

1 .10 110

•300
600 " 600

1200 1200
2400 2400
4800 4800
9600
19200 19200f

Figure 3-44

A pop-up menu as the pointer is dragged through it

The pop-up menu acts like other menus: the user can move around inside it and

choose another item, which then appears highlighted in the box, or can move outside

it to leave the current value active. If it reaches the top or bottom of the screen, a pop-

up menu scrolls like other menus.

If your application uses pop-up menus, keep the following guidelines in mind:

D Pop-up menus are used only for lists of values or related items (similar to

hierarchical submenus); they should not be used for commands.

You must draw the shadowed box indicating that there is a pop-up menu, so the user

knows that it's there—pop-up menus are never invisible.

While the menu is showing, its title is inverted. If several pop-up menus are near

each other, this clears up the possible ambiguity about which one is being chosen

from.

Special menu types 89

D The current value always appears under the pointer when the menu appears, so that

simply clicking on the box doesn't change the item.

Don't use hierarchical pop-up menus.

Pop-up menus don't have Command-key equivalents.

Always consider whether a pop-up menu is the simplest thing to use in each case, or

whether a standard menu or a scrolling box might be more appropriate.

Palettes

Some applications use palettes to provide a quick way for the user to change from one

operation to another. A palette is a collection of small symbols, usually enclosed in

rectangles. A symbol can be an icon, a pattern, a character, or a drawing that stands

for an operation. When the user has clicked on one of the symbols (or in its

rectangle), it is distinguished from the other symbols (by highlighting, for example),

and the previously highlighted symbol goes back to its normal state. Figure 3-45 shows

two palettes from MacPaint.

Drawing tool palette with

paintbrush selected

p r~l

o A
3> Hn 9Ej
&

o G3

o O
c? C?

a a

Pattern palette with
solid black selected

Figure 3-45

Two palettes

Typically, the symbol that's selected determines what operations the user can

perform. Selecting a tool from a palette puts the user into a mode. Modes are

generally discouraged but can be justified when changing from one mode to another is

almost instantaneous and when the user can always see at a glance which mode is in

effect. (Changing the shape of the pointer is one way to indicate that a mode has been
set.) Like all modal features, palettes should be used only when they're the most

natural way to structure an application.

90 Chapter 3: Specifications

A palette can be either part of a window (as in MacDraw) or separate from the main

window (as in MacPaint). Each has its disadvantages. If the palette is part of the

window, then parts of the palette may be concealed if the user makes the window
smaller. On the other hand, if it's not part of the window, then it takes up extra space

on the desktop (in which case it should at least be movable so the user can move it out

of the way).

If an application supports multiple open documents but only one palette, the palette

reflects the settings for the active window.

Tear-off menus

A tear-off menu is a menu, generally graphic rather than textual, that the user can

"tear" from the menu bar and move around the screen like a window. Tear-off menus
save desktop space, allow larger windows, and give the user more flexibility than do
fixed palettes.

The user can choose a pattern from the tear-off menu shown in Figure 3-46 simply by
pulling down the menu like any other menu, then dragging the pointer to the desired

pattern and releasing the mouse button.

* File Edit Font Style nTT (Too Is

in s ->»]

J

•f;SJ

&A/\
An

rag
inrj

'//

i

Figure 3-46
Graphic pull-down menu

If the user holds down the Apple key while opening such a menu, then moves the

pointer more than ten pixels from any edge of the menu, an outline of the menu
follows the pointer. When the mouse button is released, the menu appears at its new
location (Figure 3-47).

Special menu types 91

* File Edit Font Style Patterns Tools

ID i picture ^^
OD

L-v-K-]

>>to> n Aft
and

#
!

Figure 3-47

Torn-off menu

Even after a menu has been torn off, it can still be accessed from the menu bar. The

state of the torn-off menu must be reflected in its pull-down counterpart, and vice

versa (Figure 3-48). A given menu can exist in torn-off form only once: if the user tears

it off a second time, the first instance disappears.

* File Edit Font Style

Figure 3-48
Torn-off menu also available in menu bar

Like document windows, torn-off menus can be dragged around the screen and closed

with a close box. To avoid confusion, however, tear-off menus don't look exactly like

document windows. Tear-off menus are always "in front" of all open document
windows. If a single application can have more than one menu torn off at a time, the

application must determine their order of precedence.

92 Chapter 3: Specifications

The pointing device

In most computer systems, the keyboard is the primary input device. In the Apple

Desktop Interface, on the other hand, the pointing device is central. A pointing

device makes possible the direct manipulation that is a central part of the Desktop

Interface. The user can communicate with the computer by manipulating graphic

objects on the screen. This manipulation is direct because the user can grab (or seem

to grab) an object, then indicate what is to be done with it. How do you "grab" an

object that you see only as a two-dimensional representation on a glass screen? By

pointing at it with a pointing device.

In the Apple Desktop Interface, the standard pointing device is the mouse, but there

are other devices (track balls and graphics pens, for example) that perform the same

functions. The mouse is a hand-held device, usually (but not necessarily) connected

to the computer by a long, flexible cable. There's a single button on the mouse. The

user holds the mouse and rolls it on a flat, smooth surface. On the screen, a pointer,

which can assume different shapes according to the context of the application, follows

the motion of the mouse.

Simply moving the mouse (without pressing the mouse button) just moves the pointer.

Most actions take place only when the user positions the pointer over an object on the

screen, then presses and releases the mouse button.

Cursors, pointers, and insertion points

Traditional character-oriented command-line interfaces rely on a cursor to indicate

the place on the display where the next character that is typed will appear. The user

uses arrow keys (sometimes called "cursor keys") to move the cursor around the

screen. Because there is nothing else to "point" at, no pointer is needed.

In the Desktop Interface, on the other hand, there may be many graphic objects on
the screen, unrelated to the text insertion point, to point at. The screen pointer is

logically attached to the mouse or other pointing device; the user manipulates it to

Ishow the application what to do next, and where to do it. What Apple calls an

[insertion point shows where the next characters to be typed will appear. In text, the

[pointer shows where the insertion point will be moved to if the mouse button is

Ipressed.

The pointing device 93

Each pointer has a hot spot—the portion of the pointer that must be positioned over

a screen object before mouse clicks can have an effect on that object. The hot spot

should be intuitive, such as the tip of an arrow pointer or the center point of a

crosshair pointer. Mouse clicks have an effect only when the pointer's hot spot is

positioned over the target object's hot zone.

As the pointer moves about the screen, it may change shape. For example, in a text-

oriented program the pointer takes the I-beam shape while it's within the text, to show
where the insertion point will move to if the mouse button is pressed. When the

pointer moves outside the text, it becomes an arrow. Don't confuse the user by

changing the pointer's shape without a reason. You might want to have the pointer

change shape to give feedback on the range of activities that make sense either in a

particular area of the screen or in a current mode. Sometimes, the result of mouse

actions depends on the item under the pointer when the mouse button is pressed.

Where an application uses modes for different functions, the pointer can be a different

shape in each mode. For example, in MacPaint, the pointer shape always reflects the

currently selected tool.

Table 3-1 shows some examples of pointers and their effects. You can create

additional pointers as needed for other contexts.

Table 3-1

Pointers

Pointer Name Used for

1^ Arrow Scroll bar and other controls, size box, title bar, menu bar, desktop

I I-beam Selecting and inserting text

+ Crosshairs Drawing, shrinking, or stretching graphic objects

=3> Plus sign Selecting fields in an array

Wristwatch Showing that a lengthy operation is in progress

^ Spinning beachball Showing that the system is still alive during a lengthy operation

94 Chapter 3: Specifications

During a particularly lengthy operation, when the user can do nothing but wait until

the operation is completed, the pointer may change its shape and become a status or

progress indicator. This indicator lets the user know that the system hasn't died

—

it's just busy. The standard pointer used for this purpose is a wristwatch. Some
applications use the "spinning beachball" pointer to show that all is well during longer

operations. The kindest applications use a dial to show the passing of time, either in

absolute terms or as a proportion of the total, or both. Figure 3-49 is an example.

Percentage Complete:

|n i ii i ii ii i n n n ii |i ni|i ii i| ii ii ii
i
ii in ii ii ii i|i M n n hi ii i M ii ii

i

n n
|

n hi ii n i n n |n n ii ii
1

1

25 50 75 100

Time remaining: less than a minute.

Figure 3-49
The progress dial in AppleLink®

Mouse actions

In general, just moving the mouse changes nothing except the location, and possibly

the shape, of the pointer. Pressing the mouse button indicates the intention to do
something, and releasing the button completes the action. Pressing by itself should

have no more effect than clicking has—except in well-defined areas, such as scroll

arrows, where it has the same effect as repeated clicking.

The central mouse function is pointing. Other important mouse actions are clicking,

double-clicking, pressing, and dragging.

Clicking

Clicking has two components: pushing down on the mouse button and then quickly

releasing it while the mouse remains stationary. (If the mouse moves between button

down and button up, dragging—not just clicking—is what happens.) Some uses of

clicking are to select an object, to move an insertion point, and to turn on a control.

The effect of clicking should be immediate and evident. If the function of the click is to

cause an action (as when clicking on a button), the selection is made when the button

is pressed, and the action takes place when the button is released.

The pointing device 95

Double-clicking

Double-clicking involves a second click that follows immediately after the end of a first

click. If the two clicks are close enough to one another in terms of time (as set by the

user in the Control Panel) and of screen location, then they constitute a double click.

The most common use of double-clicking is as a shortcut way to perform an action.

For example, clicking twice on an icon is a faster way to open it than clicking once to

select it, then choosing Open from the File menu; clicking twice on a word to select it is

faster than dragging through it. Double-clicking can also be used to select a larger

object than one that can be selected by a single click.

Double-clicking is a shortcut for those users physically able to use it. Double-clicking

must never be the only way to perform a given action. Many novice users, children,

and disabled people have a hard time double-clicking.

Some applications support selection by double-clicking and triple-clicking. As always

with multiple clicks, the second click extends the effect of the first click, and the third

click extends the effect of the second click. For example, in a text-oriented

application, the first click sets an insertion point, the second click selects the whole

word containing the insertion point, and the third click might select the whole

sentence or paragraph. In a graphics application, the first click might select a single

object, and double and triple clicks might select successively larger sets of objects.

Three clicks is probably the practical limit, and even that is difficult for many people.

If an application defines the effect only of single-and double-clicking, a third click

should have no effect. If triple-clicking is defined, then the fourth click should have no

effect.

Pressing

Pressing means holding the mouse button down for a time while the mouse remains

stationary. Pressing on the scroll bar's arrows, for example, causes scrolling until the

user releases the mouse button. For certain kinds of objects, pressing on the object has

the same effect as clicking it repeatedly. For example, clicking a scroll arrow causes a

document to scroll one line; pressing on a scroll arrow causes the document to scroll

continuously until the user releases the mouse button or reaches the end of the

document.

96 Chapter 3: Specifications

Dragging

Dragging means pressing the mouse button, moving the mouse to a new position, and
finally releasing the mouse button (Figure 3-50). Dragging can have different effects,

depending on what's under the pointer when the mouse button is pressed. The uses of

dragging include selecting blocks of text, choosing a menu item, selecting a range of

objects, moving an icon or other object from one place to another, and shrinking or

expanding an object.

Graphic objects can be moved by dragging. The application either moves the entire

object, or attaches a dotted oudine of the object to the pointer and moves the outline

as the user moves the pointer. When the user releases the mouse button, the

application redraws the complete object at the new location.

1. Pointer over icon to be dragged

2. Click to select

3. Drag outline to right

4. Release burton

n
System folder applications

n
System folder B?3I^BSS

n msmsm
I * i

System folder

Figure 3-50

Dragging with the mouse

An object being moved can be restricted to certain boundaries, such as the edges of a

window. If the user moves the pointer outside the boundaries, the application stops

drawing the dotted outline of the object. If the user releases the mouse button while the

pointer is outside the boundaries, the object doesn't move. If, on the other hand, the

user moves the pointer back within the boundaries before releasing the mouse button,

the outline is redrawn in the new location. Moving an object beyond the boundary of

the window can also cause the window to scroll (autoscroll) or even move the object

from one window into another.

Mouse-ahead

Mouse-ahead (analogous to the keyboard's type-ahead) saves, in a memory buffer,

any mouse actions the user performs when the application isn't ready to process them.

If appropriate, the application can then carry out these stored processes when it has

time. Alternatively, the application can choose to ignore saved-up mouse actions, but

should do so only to protect the user from possibly damaging consequences.

The pointing device 97

The keyboard
Because—in the Apple Desktop Interface—the pointing device is used for pointing

and manipulating, users don't have to use the keyboard to type commands. The

keyboard is used primarily for entering text.

The standard keys on the keyboard are arranged in familiar typewriter fashion.

Because keyboards vary from one computer to another, no specific keyboard is

illustrated here.

There are two kinds of keys: character keys and modifier keys. A character key sends

characters to the computer. When held down, a modifier key can alter the meaning

of the character key being pressed, or alter or amplify the meaning of a mouse action.

Character keys

Character keys include keys for letters, numbers, and punctuation, as well as the Space

bar. If the user presses one of these keys while entering text, the corresponding

character is added to the text. The Enter, Tab, Return, Backspace (or Delete), Clear,

and Escape keys are also treated like character keys. Although the result of pressing one

of these keys depends on the application and the context, it is essential that they be

used consistently, as described in the following paragraphs.

Enter

The Enter key tells the application that the user is through entering information in a

particular area of the document, such as a field in an array. Most applications add

information to a document as soon as the user types or draws it. However, the

application may need to wait until a whole collection of information is available

before processing it. In this case, the user presses the Enter key to signal that the

information is complete. Enter Gike Return) can be used to dismiss dialog and alert

boxes. While the user is entering text into a text document, pressing Enter has no
effect.

Tab

In text-oriented applications, the Tab key is used to move the insertion point to the

next tab stop. In other contexts, Tab is a signal to proceed: it signals movement to the

next item in a sequence. Pressing Tab often causes an Enter operation before the tab

takes place. While the user is entering text into a text document, pressing Tab moves
the insertion point to the next tab stop.

98 Chapter 3: Specifications

Return

The Return key is another signal to proceed, but it defines a different type of motion

than Tab. Pressing Return signals movement to the leftmost field one step lower on the

display (like a carriage return on a typewriter). Return (like Tab) can cause an Enter

operation before the Return operation. Return (like Enter) can be used to dismiss

dialog and alert boxes. While the user is entering text into a text document, pressing

Return moves the insertion point to the beginning of the next line.

Backspace (or Delete)

The Backspace (or Delete) key deletes text or graphics. Generally, if a selection has

been made, pressing Backspace (or Delete) deletes the selection without putting it in

the Clipboard—and without deleting the character to the left of the insertion point. If

there is no selection, pressing Backspace (or Delete) deletes the character to the left of

the insertion point without putting it in the Clipboard. The Backspace (or Delete) key

has an effect like that of the Clear command in the Edit menu.

Clear

The Clear key has the same effect as the Clear command in the Edit menu; that is, it

removes the selection from the document without putting it in the Clipboard. Because

not all Apple computers have Clear keys, no application should ever require use of the

Clear key.

Escape

The Escape key has the general meaning "let me out of here." It's a sort of panic button

for the new user. In certain contexts its meaning is specific:

The user can press Escape as a quick way to indicate Cancel in a dialog box.

The user can press Escape to stop an operation in progress, such as printing. (Using

Escape this way is like pressing Apple- or Command-period.)

If an application absolutely requires a series of dialog boxes (a fresh look at program

design usually eliminates such sequences), the user should be able to use Escape to

move backward through the boxes.

Pressing Escape should never cause the user to back out of an operation that would
require extensive time or work to reenter. And pressing Escape should never cause the

user to lose valuable information. When the user presses Escape during a lengthy

I operation, the application should display a confirmation dialog box to be sure Escape

wasn't pressed accidentally.

The keyboard 99

Modifier keys

Modifier keys are those that alter the way other keystrokes are interpreted. These keys

sometimes affect the way the mouse button is interpreted as well. They are the Shift,

Caps Lock, Option, Control, and Apple (or Command) keys. Not all Apple keyboards

contain all of these keys. It is important that you use these keys consistently from

program to program, as outlined in these guidelines.

Shift

The Shift key, when used together with another character key, produces the uppercase

letter on alphabetic keys, or the upper character on two-character keys. The Shift key is

also used in conjunction with the mouse for extending a selection (see "Selecting" in

this chapter) or for constraining movement in graphics applications—for example, in

MacPaint, holding down the Shift key while using the rectangle tool limits the tool to

drawing squares.

Caps Lock

The Caps Lock key latches in the down position when pressed, and releases when
pressed again. When down it gives the uppercase letter on alphabetic keys. Caps Lock

has the same effect on alphabetic keys that the Shift key has, but Caps Lock has no effect

on any other keys. In other words, even when Caps Lock is down, the user must press

the Shift key to produce the uppercase characters (#, ?, and so on) on the

nonalphabetic keys.

Option

The Option key, when used together with other keys, produces a set of international

characters and special symbols. For example, in many Macintosh fonts, Option-4

produces the <t symbol, Option-r produces ®, and Option-g produces ©. Shift and
Option can be used together, in combination with a character key, to produce yet

other symbols—for example, Option-Shift-? to produce the Spanish ,; character. The
Key Caps desk accessory lets the user preview these combinations in all available

fonts. The Option key can also be used in conjunction with the mouse to modify the

effect of a click or drag.

100 Chapter 3: Specifications

The Apple (or Command) key

The Apple key is labeled on different computers with an Apple symbol, a cloverleaf

symbol, or both. It has also been known as the Command key or Open Apple key.

Pressing a character key while holding down the Apple key usually tells the application

to interpret the key as a command, not as a character. In some applications, the Apple

key is used with other keys to provide special functions or shortcuts—for example,

pressing Apple-Shift-3 on a Macintosh saves, on disk, a snapshot of the current

screen. The Apple (or Command) key can also be used in conjunction with the mouse

to modify the effect of a click or drag.

The Control key

The Control key is used with terminal-emulation programs for control-key sequences.

For all other applications, it is reserved for end-user-defined shortcut key sequences

using a macro-key facility.

Type-ahead and auto-repeat

If the user types when the computer is unable to process the keystrokes immediately, or

types more quickly than the computer can handle, the extra keystrokes are queued for

later processing. This queuing is called type-ahead. There's a limit (varying with the

computer) to the number of keystrokes that can be queued, but the limit is usually not

reached unless the user types while the application is performing a lengthy operation.

When a character key is held down for a certain amount of time, it starts repeating

automatically. This feature is called auto-repeat The user can set the delay and the

rate of repetition with the Control Panel desk accessory. An application can tell

whether a series of keystrokes was generated by auto-repeat or by pressing the same key

several times. It can choose to disregard keystrokes generated by auto-repeat; this is

usually a good idea for menu commands chosen with Apple-key combinations.

Holding down a modifier key has the same effect as pressing it once. However, if the

user holds down a modifier key and a character key at the same time, the effect is the

same as if the user held down the modifier key while pressing the character key

repeatedly.

Auto-repeat does not function during type-ahead. It operates only when the

l application is ready to accept keyboard input.

The keyboard 101

International keyboards

Keyboards used in the United States resemble those on standard American office

typewriters. The layout of the international version is designed to conform to the

International Standards Organization (ISO) standard. In different countries,

international keyboards have different labels on the keys, but the overall layout is the

same.

Arrow keys

Some Apple keyboards include four arrow keys: Up Arrow, Down Arrow, Left Arrow,

and Right Arrow (Figure 3-51).

Figure 3-51

Macintosh Plus arrow keys

Appropriate uses for the arrow keys

As a general rule, arrow keys are used to move the insertion point and (when used in

tandem with the Shift key) to expand or shrink selections. These guidelines apply both

to moving the insertion point and to making selections. In a graphics application, the

arrow keys can be used for fine movement (one pixel per keystroke) of selected

objects, after the mouse has been used for larger movements. Arrow keys are never

used to duplicate thefunction of the scroll bars or to move the mouse pointer.

The arrow keys do not replace the pointing device. They can be used as a shortcut way
to move the insertion point, and, under some circumstances, to make selections. The
guidelines in this section are the minimum guidelines for arrow keys; you can expand
on them if you need to, keeping in mind the spirit of these guidelines.

102 Chapter 3: Specifications

An application should use the arrow keys only when appropriate to the task.

Applications that deal with text or arrays (word processors, spreadsheets, and data

bases, for example) have an insertion point. This insertion point could be moved
both by the mouse and by the arrow keys.

Graphics applications have no insertion point. If a graphics application uses arrow

keys, it should be only to move the selected object by the smallest possible increment

(one pixel or one grid unit). Graphics applications should never use arrow keys to

change a selection or use modifier keys to multiply the effect of arrow keys.

Moving the insertion point

The Left Arrow and Right Arrow keys move the insertion point one character left and

right, respectively. Up Arrow and Down Arrow move the insertion point up and down
one line, respectively.

During vertical movement of the insertion point, horizontal screen position is

maintained in terms of screen pixels, not characters. (Character boundaries seldom

line up vertically when proportional fonts are used.) When the insertion point moves

to a new line, move it slightly left or right, to the nearest character boundary on the

new line. During successive movements up or down, the application should keep the

insertion point as close as possible to the original horizontal position as it moves from

line to line.

Moving the insertion point in empty documents

Various text-editing programs treat empty documents in different ways. Some assume

that an empty document contains no characters, in which case clicking at the bottom

of a blank screen causes the insertion point to appear at the top. In this situation,

Down Arrow cannot move the insertion point into the blank space (because there are

no characters there).

Other applications treat an empty document as a page of space characters, in which

case clicking at the bottom of a blank screen puts the insertion point where the user

clicked and lets the user type characters there, overwriting the spaces. In this sort of

application, Down Arrow moves the insertion point straight down through the spaces.

Whichever of these methods you choose for your application, it's essential that you be

consistent throughout.

Arrow keys 103

Using modifier keys with arrow keys

Holding down the Apple key while pressing an arrow key should move the insertion

point to the appropriate edge of the window. If the insertion point is already at the

edge of the window, then the document is scrolled one windowful in the appropriate

direction and the insertion point moves to the same edge of the new windowful.

Apple-Up Arrow moves the insertion point to the top of the window, Apple-Down

Arrow to the bottom, Apple-Left Arrow to the left edge, and Apple-Right Arrow to the

right edge.

With respect to the arrow keys, the Option key is reserved as a "semantic modifier."

The application determines what the semantic units are. For example, in a word

processor, where the basic semantic unit is the word, Option-Left Arrow and Opuon-

Right Arrow might move the insertion point to the beginning and end, respectively, of

a word. (Movement of the insertion point by word boundaries should use the same

definition of word that the application uses for double-clicking.) In a programming-

language editor, where the basic semantic unit is the token, Option- Left Arrow and

Option-Right Arrow might move the insertion point left and right to the beginning

and end of the token, respectively.

In an application (such as a spreadsheet) that represents itself as an array, the basic

semantic unit would be the cell. Option-Left Arrow would designate the cell to the left

of the currently active cell as the new active cell, and so on. Using modifier keys with

arrow keys doesn't do anything to the data; Option-Left Arrow just performs an Enter

and moves the selection to the next cell to the left.

Though the use of multiple modifier-key combinations (such as Apple-Option-Left

Arrow) is discouraged, it's all right to use the Shift key with any one of the other

modifier keys for making a selection. (See "Making a Selection With Arrow Keys" later

in this chapter.) If multiple keys must be pressed simultaneously, they should be fairly

close together—otherwise many people won't be able to use that combination.

104 Chapter 3: Specifications

Function keys

Some Apple keyboards include function keys. There are two types of function keys,

dedicated and nondedicated. The nondedicated function keys—labeled Fl through

F15—are definable by the user, not by the application. Fl through F4 represent Undo,

Cut, Copy, and Paste in any applications that use these commands.

The six dedicated function keys are labeled Help, Del, Home, End, Page up, and Page

down. These keys are used as follows:

Help. Pressing the Help key should produce help; this is equivalent to pressing

Command-? (or Command-/). The sort of help available varies among
applications; if a full, contextual help system is not available, some sort of useful

help screen should be provided.

DeL Pressing Del performs a forward delete: the character directly to the right of

the insertion point is removed, shifting everything to the right of the removed
character one character position back. The effect is that the insertion point remains

stable while it "vacuums" everything ahead of it.

If Del is pressed when there is a current selection, it has the same effect as pressing

Delete (Backspace) or choosing Clear from the Edit menu.

Home. Pressing the Home key is equivalent to moving the scroll boxes (elevators)

all the way to the top of the vertical scroll bar and to the left end of the horizontal

scroll bar. It has no effect on the location of the insertion point or any selected

material.

End. This is the opposite of Home: it's equivalent to moving the scroll boxes

(elevators) all the way to the bottom of the vertical scroll bar and to the right end of

the horizontal scroll bar. It has no effect on the location of the insertion point or

any selected material.

Page up. This is equivalent to clicking the mouse pointer in the upper gray region of

the vertical scroll bar. It has no effect on the location of the insertion point or any
selected material.

Page down. This is equivalent to clicking the mouse pointer in the lower gray

region of the vertical scroll bar. It has no effect on the location of the insertion

point or any selected material.

Function keys 105

Selecting

Before performing an operation on an object (or several objects), the user must select

it, usually by clicking on it, to distinguish it from other objects. Selecting the thing to

be operated on before identifying the operation itself is a fundamental characteristic

of the Apple human interface. The pattern is usually something like this:

1

.

The user selects an object (a noun, the thing to be operated on).

2 . The user chooses an operation (a verb, the thing to be done).

This is sometimes called the "noun-verb paradigm" or "Hey, you—do this!"

There is always a visual cue to show that something has been selected. For example,

text and icons in a monochrome environment usually appear in inverse video when
selected. In some situations, other forms of highlighting may be more appropriate.

The important thing is that there should always be immediate feedback, so the user

knows that the click had an effect.

Selecting an object never alters the object itself. Making a selection shouldn't commit
the user to anything; there should never be a penalty for making an incorrect

selection. The user can undo any selection by making any other selection.

How something is selected depends on what it is. Although there are many ways to

select objects, they fall into easily recognizable groups. Users get used to selecting

objects in a certain way, and applications that use these methods are easier to learn.

Some of these methods apply to every type of application, and some only to particular

types of applications.

Types of objects

Strictly speaking, everything on a Macintosh screen is displayed graphically. Still, it's

useful to distinguish among three types of objects—text, graphics, and lists or

arrays—because the user deals with each of them in a different way. Figure 3-52 shows
an example of each.

106 Chapter 3: Specifications

The rest to some faint meaning make pretence

But Shadwell never deviates into sense.

Some beams of wit on other souls may fall,

Strike through and make a lucid interval,

But Shadwell's genuine night admits no rag.

His rising fogs prevail upon the day.

Page 1

Text

Advertising 132.9

Manufacturing 1213

R&D 18 7

Interest 12 2

Total 285 1

Array

Graphics

Figure 3-52

Three ways of structuring information

Text can be arranged on the screen in a variety of ways. Some applications, such as

word processors, might consist of nothing but text, whereas others, such as graphics-

oriented applications, might use text almost incidentally. It's useful to consider all the

text appearing together in a particular context as a block of text. The size of the block

can range from a single field, as in a dialog box, to the whole document, as in a word
processor. Regardless of its size or arrangement, the application sees each block as a

one-dimensional string of characters. Text is edited the same way regardless of where

it appears.

Arrays are one- or two-dimensional arrangements of fields. One-dimensional arrays

are called lists, and two-dimensional arrays are called tables or forms. Each field,

in turn, contains a collection of information, usually text, but possibly graphics. A
table can be easily identified on the screen, because it consists of rows and columns of

|

fields (sometimes called cells) separated by horizontal and vertical lines. A form is

something the user fills out, like a tax form or credit-card application. The fields in a

form can be arranged in any appropriate way, nevertheless, the application regards

the fields as being in a definite linear order.

Selecting 107

Graphics are pictures, drawn either by the user or by the application. Graphics in a

document tend to (but do not have to) consist of discrete objects, each of which can

be selected individually.

Each of these three ways of presenting information retains its integrity regardless of the

context in which it appears. For example, a field in an array can contain text. When
the user is manipulating the field as a whole, the field is treated as part of the array.

When the user wants to change the contents of the field, he or she edits the field in the

same way as any other text

This section discusses first the general methods of selecting and then the specific

methods that apply to text applications, graphics applications, and arrays.

Selection in general

This section covers the topic of selection without regard to the kind of data involved:

selection by clicking, range selection, extending a selection, and discontinuous

selection. In a monochrome environment, inverse video indicates what has been

selected. Figure 3-53 compares some of the general methods.

IS BID D E
IE M D E

Clicking on B selects B

Range selection of A through C
selects A. B, and C

Discontinuous selection
(range selection of A. B. and C
Is extended to Include E)

Figure 3-53
Selection methods

Selection by clicking

The most straightforward method of selecting an object is by clicking on it once.

Icons, insertion points, and most other things that can be selected are selected this

way.

m m d m

108 Chapter 3: Specifications

Range selection

The user selects a range of objects by dragging through them. Although the exact

meaning of the selection depends on the type of application, the procedure is always

the same:

1

.

The user positions the pointer at one corner of the range and presses the mouse
button. This position is called the anchor point of the range.

2

.

Without releasing the button, the user moves the pointer in any direction. As the

pointer is moved, visual feedback indicates the objects that would be selected if the

mouse button were released. For text and arrays, the selected area is continuously

highlighted. For graphics, a dotted rectangle expands or contracts to show the

range that will be selected. (If possible, the view should scroll to allow extending the

selection beyond one windowful.)

3

.

When the feedback shows the desired range, the user releases the mouse button.

The point at which the button is released is called the active end of the range.

Extending a selection

A user can change the extent of an existing selection by holding down the Shift key and

clicking the mouse button (Shift-click). Exactly what happens next depends on the

context.

In text or an array, the result of a Shift-click is always the selection of a range

(Figure 3-54). The position where the button is clicked becomes the new endpoint of

the range. If the user Shift-clicks within the current range, the new range will be smaller

than the old range.

Extended selections can be made even across the panes of a split window.

The selection

1. Shift-click here

2. The selection expands

IJ'iiJlJ.tlAl.k laro.««M^aifl<agi«.TB«iHiBa

later if there is timelenough. (Shaw)

Everything happ

later if there is (Shaw)

3. Shift-click here

14. The selection shrinks

enough. (Shaw)

jBiEisa 33 na
f there is time enough. (Shaw)

[Figure 3-54
Expanding and shrinking a text selection

Selecting 109

Making a discontinuous selection

In graphics applications, objects aren't usually considered to be in any particular

sequence. A selection is extended by adding objects to it, and the added objects do

not have to be adjacent to the objects already selected. The user can add either an

individual object or a range of objects to the selection by holding down the Shift key

before making the additional selection (Shift-click). When the user does this, the

objects between the current selection and the new object are not automatically

included in the selection. This kind of selection is called a discontinuous selection.

If the user holds down the Shift key and selects one or more objects that are already

highlighted, the objects are deselected.

In the case of graphics, all selections are discontinuous selections because graphic

objects are discrete. This is not the case with arrays and text, in which an extended

selection made by a Shift-click always includes everything between the old anchor

point and the new endpoint. In arrays and text, discontinuous selections are made by
clicking while holding down the Apple (Command) key.

To make a discontinuous selection in a text or array application, the user selects the

first piece in the usual way and holds down the Apple key while selecting the remaining

pieces. Each piece is selected in the same way as if it were the whole selection, but

because the Apple key is held down, the new pieces are added to the existing selection

instead of replacing it. If one of the pieces selected with Apple-click is already within

an existing part of the selection, then instead of being added to the selection it's

removed from the selection. Figure 3-55 shows a sequence in which several pieces are

selected and deselected.

1 . Cells B2. B3. C2. and C3
are selected

ABC^m
2. The user holds down 2

the Apple key and clicks in D5

ABC

3. The user holds down 2

the Apple key and clicks in C3 3

ABC

Figure 3-55
Discontinuous selection within an array

110 Chapter 3: Specifications

Not all applications support discontinuous selections, and those that do might restrict

the operations a user can perform on them. For example, a word processor might

allow the user to choose a font after making a discontinuous selection, but wouldn't

allow the user to type replacement characters (which part of the selection would they

replace?).

Selection by data type

This section covers the topic of selection according to the kind of data involved: text,

graphics, and arrays.

Selections in text

In most applications, the user is required at some point to edit text. The principle of

consistency (both within and among applications) requires that text be selected and

edited in a consistent way, regardless of where it appears.

A block of text is a string of characters. A text selection is a substring of this string,

which can have any length from zero characters to the whole block. Each of the text

selection methods selects a different kind of substring. Figure 3-56 shows different

kinds of text selections.

Li f e] is just a bowl of Apples'
Insertion point /

Range of characters [^^J^ Q83 J^'
1

''

Word i ife is lust a iaawii of Apples'

Range of words ^a bowl of Apples'

Discontinuous selection Life isj^^a bowl of

Figure 3-56
Text selections

The insertion point is a zero-length text selection. The user establishes the location

of the insertion point by clicking somewhere in the text. The insertion point then

appears at the nearest character boundary. If the user clicks anywhere to the right of

the last character on a line, the insertion point appears immediately after the last

character. If the user clicks to the left of the first character on a line, the insertion point

appears immediately before the first character (unless the document is filled with

space characters).

The insertion point shows where text will be inserted when the user begins typing, or

where cut or copied data (the contents of the Clipboard) will be pasted. As each

character is typed, it is inserted to the left of the insertion point.

Selecting 1 1

1

If, between mouse-down (the moment the mouse button is pressed) and mouse-up

(the moment the button is released), the user drags (moves the pointer more than

about half the width of a character), the characters that were dragged across become
selected. The selection is a range selection rather than an insertion point.

The user selects a whole word by double-clicking somewhere within that word. If the

user begins a double-click sequence, but then drags the mouse between the mouse-

down and the mouse-up of the second click, the selection becomes a range of words

rather than a single word. As the pointer moves, the application highlights or

unhighlights a whole word at a time.

A word or range of words can also be selected in the same way as any other range;

whether this type of selection is treated as a range of characters or as a range of words

depends on the operation. For example, in MacWrite, a range of individual

characters that happens to coincide with a range of words is treated like characters for

purposes of extending a selection, but is treated like words for purposes of "intelligent

cut and paste" (described later in this chapter under "Editing Text").

The following definition of a word applies in the United States and Canada. In other

countries, the definition differs to reflect local formats for numbers, dates, and
currency. A word is defined as any continuous string that contains only the following

characters:

a letter

D a digit

a nonbreaking space (Option-space or Apple-space)

a currency symbol ($, <t, £, or ¥)

a percent sign

a comma between digits

a period before a digit

an apostrophe between letters or digits

D a hyphen, but not a minus sign (Option-hyphen) or a dash (Option-Shift-hyphen)

If the user double-clicks over any character not on the list above, only that character is

selected.

These are examples of words:

$123,456.78

shouldn't

3 1/2 (with a nonbreaking space)

.5%

112 Chapter 3: Specifications

These are examples of strings treated as more than one word:

7/10/6

blue cheese (with a breaking space)

"Wow!" (The quotation marks and exclamation point aren't part of the word.)

In some contexts—in a programming language, for example—it may be appropriate

to allow users to select both the left and right parentheses in a pair, as well as all the

characters between them, by double-clicking on either one of them. The same feature

could be implemented for both braces and brackets. This would mean that the user

could select the entire expression

[x+;K4*3) A (rc-l)]

simply by double-clicking on [or].

The user selects a range of text by dragging through the range. A range can be a range

of characters, words, lines, or paragraphs, as defined by the application.

If the user extends the range, the way the range is extended depends on what kind of

range it is. If it's a range of individual characters, it can be extended one character at a

time. If it's a range of words (including a single word), it's extended only by whole

words.

Making a selection with arrow keys

To use arrow keys to make a text selection, the user holds down Shift while pressing an

arrow key. If it's important that your Macintosh application makes use of the numeric

keypad, you shouldn't use these Shift-arrow key combinations. This is because the key

codes for the four Shift-arrow key combinations are the same as those for the keypad's

+, *, /, and - keys. If the use of a Shift-arrow key combination for making selections is

more important to your application than is the numeric keypad, the following

paragraphs describe how it should work.

When a Shift-arrow key combination is pressed, the active end of the selection moves
and the range over which it moves becomes selected. If both the Shift key and another

modifier key are held down, the end of the selection moves as defined for the

particular modifier key, and the range over which it moves becomes selected. For

example, Option-Shift-Left Arrow selects the whole word that contains the character to

the left of the insertion point (just like double-clicking on a word).

A selection made by using the mouse is no different from one made by using arrow

keys. A selection started with the mouse can be extended by using Shift and Left or

Right Arrow.

Selecting 113

In a text application, pressing Shift and either Left Arrow or Right Arrow selects a single

character. Assuming that the Left Arrow key was used, the anchor point of the selection

is on the right side of the selection, the active end on the left. Each subsequent Shift-

Left Arrow adds another character to the left side of the selection. A Shift-Right Arrow

at this point shrinks the selection. Figure 3-57 summarizes these actions.

1. Insertion point is within a word wdrd

2. Shift-*— is pressed wBrd

3. Another Shift-*- BBrd

4. Shift-- wgrd

5. Three more times Shift—

»

woffl

Figure 3-57

Selecting with Shift and arrow keys

Pressing Option-Shift and either Left Arrow or Right Arrow (in a text application)

selects the entire word containing the character to the left of the insertion point.

Assuming Left Arrow was pressed, the anchor point is at the right end of the word, the

active end at the left. Each subsequent Option-Shift-Left Arrow adds another word to

the left end of the selection, as shown in Figure 3-58.

1. Insertion point is within a word another wofd

2. Option-Shift-*- Is pressed another

3. Another Option-Shift-—

Figure 3-58

Selecting with Option-Shift and arrow keys

Undoing a text selection

When a block of text is selected, either with a pointing device or with cursor keys,

pressing either Left Arrow or Right Arrow deselects the range. If Left Arrow is pressed,

the insertion point goes to the beginning of what had been the selection. If Right Arrow
is pressed, the insertion point goes to the end of what had been the selection.

114 Chapter 3: Specifications

Selections in graphics

In existing applications, there are several different ways to select graphic objects and

to show selection feedback. This section shows how MacDraw and MacPaint do it, but

other situations may require other solutions.

A MacDraw document is a collection of individual graphic objects. To select one of

these objects, the user clicks once on the object, which is then bracketed with

"handles." (The handles are used to stretch or shrink the object.) Figures 3-59 and

3-60 show examples of selection in MacDraw and MacPaint.

VJT-T-f-T-f-Tv"

kk
.^

This is a block of

text in MacDraw

Figure 3-59
Graphic selection In MacDraw

In MacDraw, there are two ways to select more than one object. A range selection

includes every object completely contained within the dotted rectangle that encloses

the range as the user drags the mouse. A discontinuous selection includes only those

objects explicitly selected.

A MacPaint document, on the other hand, is a series of pixels—not discrete objects.

Selections are shown surrounded by a moving dashed line (sometimes called a

marquee or "marching ants").

The pie is selected

Figure 3-60
Graphic selection in MacPaint

Selecting 115

Selections in arrays and tables

An array is a one- or two-dimensional arrangement of fields. The user can select one

or more fields, or part of the contents of a field.

To select a single field, the user clicks in the field (Figure 3-61). The user can also select

a field by moving into it with the Tab or Return key.

Click here to select Hawaii field

State Capital

Alaska Juneau

Arizona Phoenix

California Sacramento

Colorado Denver

Hawaii 1^ Honolulu

Idaho Boise

Montana Helena

Nevada Carson City

New Mexico Santa Fe

Oregon Salem

Utah Salt Lake City

Washington Olympia

Wyoming Cheyenne

State Capital

Alaska Juneau

Arizona Phoenix

California Sacramento

Colorado Denver

^| Honolulu

Idaho Boise

Montana Helena

Nevada Carson City

New Mexico Santa Fe

Oregon Salem

Utah Salt Lake City

Washington Olympia

Wyoming Cheyenne

Figure 3-61

Field selection In an array

To select part of the contents of a field, the user must first select the field. The user then

clicks again to select the desired part of the field. Because the contents of a field are

either text or graphics, this type of selection follows the rules outlined above.

A table can also support selection of rows and columns. The most convenient way for

the user to select a column is to click in the column header. To select more than one

column, the user drags through several column headers. The same applies to rows.

Figures 3-62, 3-63, and 3-64 show column, range, and discontinuous selections in

arrays.

Pressing the Tab key cycles the insertion point through the fields in an order

determined by the application. From each field, the Tab key selects the "next" field.

Typically, the sequence of fields is first from left to right, and then from top to

bottom. When the last field in a form is selected, pressing the Tab key selects the first

field in the form. If there's a good reason, an application may guide the user through

the fields in some order other than the order in which the fields appear on the screen.

The Return key selects the first field in the next row. If the idea of rows doesn't make
sense in a particular context, then the Return key should have the same effect as the

Tab key.

116 Chapter 3: Specifications

Click here to select the column State k Capital

A 1 a s k a Juneau

Arizona Phoenix

California Sacramento

Colorado Denver

Hawaii Honolulu

Idaho Boise

Montana Helena

Nevada Carson City

New Mexico Santa Fe

Oregon Salem

Utah Salt Lake City

Washington Olympia

Wyoming Cheyenne

Figure 3-62

Column selection in an array

Drag through this area
to select a range

Figure 3-63
Range selection in an array

1. Click here

2. Shift-click here

Idaho

Nevada

^na

da -'•....

a,New Mexico

Oregon

Utah

Washington

Wyoming

3. Shift-click here

4. Shift-click here

Figure 3-64
Discontinuous selection In an array

Capital

Juneau

Helena

Carson City

' 5jn»a.£«
"

Salem

S~iru"e"t~ ^-

Olympia

Cheyenne

State Capital

Alaska Juneau

Arizona Phoenix

California Sacramento

Colorado Denver

Hawaii Honolulu

Idaho Boise

Utah Salt Lake City

Washington Olympia

Wyoming Cheyenne

Selecting 117

Editing text

In addition to the editing features that the user accesses through the Edit menu, there

are ways to edit text without using menu commands.

Inserting text

To insert text, the user selects an insertion point by clicking where the text is to go,

then starts typing. The application continually moves the insertion point to the right

as each new character is added.

Applications with multiple-line text blocks should support word wraparound. That

is, no word should be broken between lines.

Backspacing

When the user presses the Backspace or Delete key, one of two things happens:

D If the current selection is an insertion point, the character to the left of the insertion

point is deleted.

If the current selection is one or more characters, it's deleted. (This is equivalent to

choosing Clear from the Edit menu.)

In either case, the insertion point replaces the deleted character (or characters) in the

document. The deleted characters don't go into the Clipboard, but the user can undo
the deletion by immediately choosing Undo.

Replacing text

If the user starts typing when the selection is one or more characters, the characters

that are typed replace the selection. The deleted characters don't go into the

Clipboard, but the user can undo the replacement by immediately choosing Undo.

118 Chapter 3: Specifications

Intelligent cut and paste

"Intelligent" cut and paste is a set of editing features that takes into account the need

for spaces between words. To understand why this feature is helpful, consider the

following sequence of events in a text application without intelligent cut and paste:

1

.

A sentence in the user's document reads

Returns are only accepted if the merchandise is damaged.

The user wants to change this to

Returns are accepted only if the merchandise is damaged.

2 . The user selects the word only by double-clicking. The letters are highlighted, but

neither of the adjacent spaces is highlighted.

3 . The user chooses Cut, clicks just before the word if and chooses Paste.

4 . The sentence now reads

Returns are accepted onlyifthe merchandise is damaged.

Note the extra space between are and accepted, and the lack of a space between only

and if. To correct the sentence, the user has to remove the extra space between are

and accepted, and add one between only and if. At this point he or she may be

wondering why people bother with computers at all.

If an application supports intelligent cut and paste, these are the rules:

a If the user selects a word or a range of words, the selection itself is highlighted, but

spaces adjacent to the selection are not highlighted.

When the user chooses Cut, if the character to the left of the selection is a space, cut

the space along with the selection. If the character to the left of the selection is not a

space, but the character to the right of the selection is a space, cut that space along

with the selection.

When the user chooses Paste, if the character to the left or right of the current

selection is part of a word, insert a space before pasting.

If the left or right end of a text selection is a word, follow these rules at that end,

regardless of whether there's a word at the other end. Figure 3-65 shows two examples
of intelligent cut and paste.

Editing text 119

1

.

Select a word

2. Choose Cut

3. Select an Insertion point

4. Choose Paste

Drink to me HflBwith thine eyes

Drink to me|with thine eyes

Drink to me with (thine eyes

Drink to me with only|thine eyes

1

.

Select a word How IWBB brown cow

2. Choose Cut How,| brown cow

3. Select an Insertion point How|, brown cow

4. Choose Paste How now|, brown cow

Figure 3-65

Intelligent cut and paste

Note that the selected text is not necessarily exactly the same range that will be cut and,

eventually, pasted.

Intelligent cut and paste should be used only if the application supports the full

definition of a word (as detailed in this chapter under "Selections in Text"), rather

than the definition of a word as "anything between two spaces." These rules apply to

any selection consisting of one or more whole words, whether the user selected it with

a double click or as a range selection.

Editing fields

If an application isn't primarily a text application, but does use text in fields (such as in

a dialog box), you may not need to provide the full text-editing capabilities described

so far. In Macintosh applications, the simplest way to implement text editing is to use

TextEdit in the User Interface Toolbox. It's important, however, that whatever editing

capabilities the application provides under these circumstances be upward-

compatible with the full text-editing capabilities. The following list ranks the

capabiliues that can be provided, in a continuum from the minimum set to the most

sophisticated features:

n The user can select the whole field and type in a new value, use backspace, select a

substring of the field and replace it, and select a word by double-clicking.

d The user can choose Undo, Cut, Copy, Paste, and Clear, as described in this

chapter under "The Edit Menu."

Intelligent cut and paste is fully implemented. (TextEdit does not provide this.)

120 Chapter 3: Specifications

Even applications with only minimal text editing should perform appropriate edit

checks. For example, if the only legitimate value for a field is a string of digits, the

application should issue an alert message if the user types any nondigits. For example,

the alert message might interrupt the erring user to remind him or her that the letters /

and O can't be used in place of the numerals 1 and 0. Alternatively, the application

could wait until the user is through typing before checking the validity of a field's

contents. In this case, the appropriate time to check the field is when the user clicks

anywhere other than within the field or presses the Return, Enter, or Tab key.

Editing text 121

Appendix A

The Roots of the Apple
Desktop Interface

The Apple employees who created the Apple Desktop Interface had been involved in,

or were influenced by, important research done at several institutions over the

previous twenty or more years.

In the early 1960s, the Augmentation Research Project at SRI International made
important contributions. Its focus was the "augmentation of human intellect." This

notion put the human being, rather than technology, at the center of human-

computer interactions and resulted in some unique concepts of what a human
interface should be. Most directly, it implied that the goal of human-computer

interactions was the enhancement of human performance, in contrast to other

contemporary efforts that focused either on technology development in isolation, or

on the development of control panels that helped people "keep up with" and guide

powerful computational systems.

This augmentation approach led to hardware innovations, the principal example of

which is the mouse, which lets people drive computer interactions by pointing at the

screen rather than typing commands at the keyboard. This approach is a central tenet

of the Apple Desktop Interface.

Important work at Xerox Corporation's Palo Alto Research Center (Xerox PARC)
extended the concept of humans at the center of human-computer interactions. In the

early 1970s, PARC provided the first explicit expression of the computer desktop.

PARC's desktop featured windows that overlap on the screen, much like overlapping

pieces of paper on a real desktop. Icons, typically representing familiar objects,

appeared on the desktop to provide direct and visible access to files, operations, and

so on. Bit-mapped graphics enabled users to directly combine text and graphics.

123

At Apple in the late 1970s and early 1980s, the development of the Lisa computer

carried the work still further. A range of features now familiar in the Apple Desktop

Interface—including the menu bar, the one-button mouse, dialog boxes, the

Clipboard, and the trash can—were introduced with the Lisa. This palette of consistent

elements made Lisa very easy to learn and use.

The Apple Macintosh computer made these human interface features more

approachable and available on a less expensive machine, again emphasizing the

humanness of the machine and the computer's role as a tool for magnifying human
capability.

The Apple Desktop Interface can be implemented to some degree on any Apple

computer. The goal is to provide a consistent interface for users of many machines, so

that users can take advantage of the unique features of each machine within the context

of a familiar and approachable interface.

124 Appendix A: The Roots of the Apple Desktop Interface

Appendix B

Software for

International Markets

General guidelines

Localization is the process of adapting an application to a specific locale. By making

localization relatively painless, you'll ensure that international markets are available

for your product in the future. You'll also allow English-speaking users in other

countries to buy the U.S. English version of your software and use it, if they wish to,

with their native languages. To create easily localized software, you must follow certain

guidelines for the use of text, fonts, sorting, and date/time display.

Make quoted strings that will have to be translated easy for the translator to find. No
text the user sees should be in the program code itself. Storing user-visible text in

resources will make translation easier.

If your program relies on properties of the ASCII code table or uses data

compression codes that assume a certain number of letters in the alphabet,

remember that not all alphabets have the same numbers of characters. German, for

example, has 30 characters, English 26.

Don't assume that all languages have the same rules for punctuation, word order,

and alphabetizing. In Spanish, questions both begin and end with a question

mark—the beginning one being an upside-down version of the closing one. The
roles of commas and periods in numbers is sometimes the reverse of what you may
be used to—in many countries the number 3,546.98 is rendered 3.546,98.

D Don't let your program rely on strings having a particular length. Translation will

make most strings longer.

125

Laws and customs vary. The elements of addresses don't always appear in the same

order. In some countries, the postal zone code precedes the name of the city, in

other countries it's the reverse. Postal zone codes don't contain the same number

of characters in every country, and in some countries they contain letters as well as

numbers. The rules for amortizing mortgages and calculating interest rates vary

from country to country—even between Canada and the United States.

Keyboards vary from country to country. Some characters appear on some

keyboards and not on others. Keystrokes that are easily performed with one hand in

your own country may require two hands in another. In France and Italy, for

example, typing numerals requires pressing the Shift key.

Units of measure and standard formats for time and date differ from country to

country. For example, "lines per inch" is meaningless in the metric world—that is,

almost everywhere. In some countries, the 24-hour clock prevails. Such culture-

dependent information can be read from resources so that the application

automatically works correctly in countries where those resources have been

properly set up.

Words aren't the only things that change from country to country. Telephones and

mailboxes, to name just two examples often used in telecommunications programs,

don't look the same in all parts of the world. Either make your graphics culturally

neutral, or be prepared to create alternate graphics for various cultures.

Mnemonic shortcuts that are valid in one language may not be valid in others. Make
sure all such shortcuts are also in resources.

Macintosh localization

This section is specific to the Macintosh family of computers. For full details, see

Inside Macintosh.

The Macintosh Resource Manager allows the separation of code and data. Data (in the

form of resources) can be edited with a number of tools such as REdit and ResEdit.

Changing the appropriate resources lets you change the appearance of an application

(dialog boxes, messages, menus, and so on) without rebuilding the application code.

Always use the Macintosh's international resources where applicable.

126 Appendix B: Software for International Markets

Text

For legibility, some non-Roman characters need higher resolution than Roman
characters. On the Japanese Macintosh Plus, for example, the system font must be

larger than normal—it must allow for l6-by-l6 pixel characters. The Macintosh Plus

ROM sets the system font size and family according to low-memory variables. For

example, it is possible to specify text in dialog boxes and menu bars to 14-point New
York. Applications should not change the system font or font size: let the user (or the

system, where that is possible) make such changes. Applications can use SysFontSize

to get the default font size to use for their text.

Line spacing

Most Roman fonts for the Macintosh have space above all the letters to allow for

diacritical marks as with A or N. If text is drawn using a standard font immediately

below a dark line, for example, it will appear to be separated from the line by at least

one row of blank pixels (for all but a few exceptional characters). Pixels in some non-

Roman fonts, on the other hand, can extend to the top of the character, and appear to

merge with the preceding line. To avoid character display overlap, applications

should leave blank space around text (as in dialog editText items) or add space before

the first line of text and after the last line of text, as well as between lines of text.

Font selection

The choice of script (or alphabet: Roman, Kanji, Arabic, and so on) depends on the

fonts chosen by the user. If an application does not allow the user to change fonts, or

allows the user only to select a global font for the whole document, then the user is

restricted in the choice and mix of scripts.

Uppercase and lowercase

If text must be displayed in either uppercase or lowercase, the application should call

the Transliterate routine (in the Script Manager) to perform the operation. The
UprString routine in the Macintosh ROM is designed to be used by the File system and
as such does not handle diacritical marks or non-Roman scripts correctly.

Macintosh localization 127

Menus

In the Macintosh Plus ROM, the Menu Manager uses the system font and the system

font size in setting up the height of the menu bar, and of the items in menus. Because

the system font size can vary, the height of the menu bar can also vary. When
determining window placement on the screen, do not assume that the menu bar height

is 20. Applications should use the low memory variable MBarHeight (instead of 20) as

the height of the menu bar.

If a menu contains too many items to display at once, on a Macintosh Plus the menu

scrolls to reveal the hidden items. This feature was devised only for the menus to which

the user can add many items—the Font menu specifically. Application programmers

should not create menus that are too long to be seen without scrolling.

Applications should avoid using too many menus, because translation into other

languages almost always widens menu titles, forcing some far to the right (possibly

conflicting with the Switcher), or even off the screen. Applications should always leave

room for the menu that some desk accessories add to the menu bar.

The International Utilities Package

The International Utilities Package provides routines for dealing with sorting,

currency, measurement systems, and date and time formatting. It is important that

you use the routines in this package, rather than the System Utility routines contained

in the Macintosh ROM—the ROM routines are not as accurate and (because they are

used by the File system) they can't be localized for different countries.

The Script Manager

The Script Manager contains routines that allow an application to function correctly

with non-Roman scripts. It also contains utility routines for text processing and
parsing, which are useful for applications that do a lot of text manipulation. General

applications don't need to call Script Manager routines directly, but can be localized

for non-Roman alphabets through such script interface systems as Apple's Kanji

Interface System (KanjiTalk) and Arabic Interface System.

128 Appendix B: Software for International Markets

Dialog and alert boxes

Give text room to grow during localization. For example, don't create a screen-sized

dialog box that is completely filled with text. Most languages require more characters

than English does to convey equivalent messages.

When creating parameterized text, be sure the localizer will be able to rearrange the

sentence as needed. For example, if an alert box sentence is to say

There was a problem doing ^0 to the M
then the localizer will be able to correctly order the noun and prepositional phrase for

different languages.

Avoid hard-coding positions for drawing text or graphics. If possible, use a Userltem

for positioning or dynamic display or PICT to display static graphics.

Macintosh localization 129

Appendix C

Recommended Reading

The following works are recommended for those interested in

further reading on human interface design and the use of color.

Articles and Papers

Baron, S., and R. W. Pew. "Perspectives on Human
Performance Modelling." Automatica, November 1983,

665-676.

Buxton, W. "A Directory of Sources for Interactive

Technologies." SIG-CHI Bulletin, July 1986, 58-63.

Carroll, John. "Presentation and Form in User-Interface

Architecture." BYTE, December 1983, 113-122.

Carroll, John, and Mary Beth Rosson. "Beyond MIPS*:

Performance Is Not Quality." BYTE, February 1984, 168-172.

Colby, K. M., L. Tesler, and H. Enea. "Experiments With a

Search Algorithm for the Data Base of a Human Belief

Structure." Proceedings of the International Joint Conference on
Artificial Intelligence, May 1969, 649-654.

D Covington, Jon S. "The Uses of Apple in Training." Society for

Applied Learning Technology, February 1983.

Gassee, Jean-Louis. "The Next Decade: An Insider's View." A+:

The Independent Guide to Apple Computing, February 1987,

51-53.

131

Hooper, K. "A Cognitive Approach to Computer Graphics,

Environmental Simulation and Design." Proceedings of the

International Conference on Cybernetics and Society, 1975,

112-113.

D Kay, A. "Inventing the Future (Computer Industry)." In Al

Business. The Commercial Uses of Artificial Intelligence.

Cambridge, MA: MIT Press, 1984, 103-112.

Kay, A. "Smaller Is More Portable." Computing (GB), June

1984, 28.

D Kay, A., and A. Goldberg. "Personal Dynamic Media."

Computer (USA), March 1977, 31-41.

D Licklider, J. C, et al. "The Computer as a Communication

Device." International Science and Technology, 76, 21-31.

a Miller, D.C., and R. W. Pew. "Exploiting User Involvement in

Interactive System Development." Proceedings of the Human
Factors Society 25th Annual Meeting, 1981, 401-405.

Minsky, M. R. "Manipulating Simulated Objects with Real-World

Gestures Using a Force and Position Sensitive Screen." Comput.

and Graphics (GB), July 1984, 195-203.

Myers, B.A., and W. Buxton. "Creating Highly-Interactive and

Graphical User Interfaces by Demonstration." Comput.

Graphics (USA), August 1986, 249-256.

Price, Jonathan. "How Apple Put Training on a Disk." Softalk,

July 1984, 48-55.

D Schneiderman, Ben. "Direct Manipulation: A Step Beyond

Programming Languages." IEEE Computer, \6 (8), 57-69.

Sculley, John. "Why We Need a Counterbalance." Personal

Computing, October 1986, 280.

Shackel, B. "Man-Computer Interaction: The Contribution of

the Human Sciences." IEEE Trans. Man-Mach. Syst. (USA),

December 1969, 149-163.

Shackel, B. "Designing for People in the Age of Information."

Comput. Compacts (Netherlands), 2 (5-6), 150-157.

Shackel, B. "The Ergonomics of the Man-Computer Interface."

Infotech (GB), 1979, 299-324.

D Smith, D. C, et al. "Designing the Star User Interface." BYTE, 7

(4), 242-282.

Spiliotopoulos, V., and B. Shackel. "Towards a Computer
Interview Acceptable to the Naive User." Int. J. Man-Mach. Stud.

(GB), 14 (1), 77-90.

132 Appendix C: Recommended Reading

Tesler, Larry. "Enlisting User Help in Software Design." SIG-CHI

Bulletin, January 1983, 5-7.

d Tesler, Larry. "Object-Oriented User Interfaces and Object-

Oriented Languages." ACM Conference on Personal and Small

Computers, 1983, 3-5.

Tesler, Larry. "The Legacy of the Lisa." Macworld, September

1985, 17-22. How the Lisa changed personal computing, by a

member of the Lisa design team.

Tesler, Larry. "Programming Experiences." BYTE, August 1986,

195.

Books

Apple Computer, Inc. Inside Macintosh. Reading, MA:

Addison-Wesley, 1985-1987, five volumes. The essential

reference for Macintosh programmers. Chapters on memory
management, assembly language, the Resource Manager,

QuickDraw, the Font Manager, the Toolbox Event Manager, the

Window Manager, the Control Manager, and so on. Note that

the "User Interface Guidelines" chapter in Inside Macintosh is

superseded by Human Interface Guidelines: The Apple Desktop

Interface.

Baecker, Ron, and William Buxton, eds. Readings in Human-
Computer Interaction: A Multidisciplinary Approach. Des

Moines, IA: Morgan Kaufmann, 1987.

Beech, D., ed. Concepts in User Interfaces. lecture Notes in

Computer Science Series, vol. 234, New York: Springer-Verlag,

1986.

Berryman, Gregg. Notes on Graphic Design and Visual

Communication. Los Altos, CA: William Kaufmann, 1984. Deals

with logos, colors, many other topics.

Bertin, Jacques. Semiology of Graphics. Madison: University of

Wisconsin Press, 1983.

Bolt, Richard A. The Human Interface.- Where People and
Computers Meet. New York: Van Nostrand Reinhold, 1984.

Card, Stuart K., et al. The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, 1983.

Carroll, J. M. Interfacing Thought: Cognitive Aspects ofHuman
Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum

Associates, 1987.

Appendix C: Recommended Reading 133

d Coombs, M. J., and J. L. Alty. Computing Skills and the User

Interface. New York: Academic Press, 1981.

Diethelm, Walter. Signet Sign Symbol. Zurich: ABC Verlag,

1976.

d Drexler, Eric. Engines of Creation. New York: Doubleday, 1986.

Foreword by Marvin Minsky.

Dreyfuss, Henry. Symbol Sourcebook, an Authoritative Guide to

International Graphic Symbols. New York: Van Nostrand

Reinhold, 1984. Foreword by R. Buckminster Fuller. Symbols are

grouped by subject areas. Includes index.

Engelbart, Douglas C. Augmenting Human Intellect, a

Conceptual Framework. Menlo Park, CA: Stanford Research

Institute, 1962.

Favre, Jean-Paul, and Andre November. Color and
Communication. Zurich: ABC Verlag, 1979.

Frutiger, Adrian. Type Sign Symbol. Zurich: ABC Verlag, 1980.

Gassee, Jean-Louis. The Third Apple: Personal Computers and
the Cultural Revolution. New York: Harcourt Brace Jovanovich,

1987.

Goldberg, A. Smalltalk-80, the Interactive Programming
Environment. Reading, MA: Addison-Wesley, 1984.

Green, Thomas, and Ernest Edmonds, eds. The Ergonomics of

the User Interface. Behaviour and Information Technology

Special Issue Series, vol. 3, no. 2. Philadelphia: Taylor &
Francis, 1984.

Greenberg, D., A. Marcus, A. Schmidt, and V. Gorter. The

Computer Image. Menlo Park, CA: Addison-Wesley, 1982.

d Guedj, R. A., et al. Methodology of Interaction. Amsterdam:

North-Holland, 1980.

Heckel, Paul. The Elements ofFriendly Software Design. New
York: Warner Books, 1984.

Hildreth, Charles. Foreword by C. Lee Jones. Online Public

Access Catalogs.- The User Interface. OCLC Library Information

and Computer Science Series. Dublin, OH: OCLC Online

Comp, 1982.

d Hunt, Morton. The Universe Within. New York: Simon &
Schuster, 1982.

Itten, Johannes. The Elements of Color, edited by F. Birren. New
York: Van Nostrand Reinhold, 1970.

134 Appendix C: Recommended Reading

D Kay, Alan. Creative Art Through Photography. Newton Centre,

MA: Branford, 1973.

Kay, Alan. My Generations. New York: Behrman, 1984.

Lindsay, Peter H., and Donald A. Norman. Human Information

Processing: An Introduction to Psychology. New York:

Academic Press, 1977.

McConnell, Vicki. Building the End User Interface. Reading,

MA: Addison-Wesley, 1983.

McCormick, Ernest J. Human Factors in Engineering and
Design. New York: McGraw-Hill, 1976.

McKim, Robert H. Experiences in Visual Thinking. Monterey,

CA: Brooks/Cole, 1972.

Minsky, Marvin. Computation: Finite and Infinite Machines.

Englewood Cliffs, NJ: Prentice-Hall, 1967.

D Minsky, Marvin. The Society ofMind. New York: Simon &
Schuster, 1987.

Modley, Rudolf. Handbook of Pictorial Symbols. New York:

Dover Publications, 1976.

Nelson, Theodor H. Computer Lib. Schooleys Mountain, NJ:

Nelson, 1974.

Nelson, Theodor H. Literary Machines. Schooleys Mountain,

NJ: Nelson, 1981.

a Nickerson, Raymond S. Using Computers: Human Factors in

Information Systems. Cambridge, MA: MIT Press, 1986.

Norman, Donald A. Memory and Attention: An Introduction to

Human Information Processing. New York: Wiley, 1976.

Norman, Donald A., ed. Perspectives on Cognitive Science.

Hillsdale, NJ: Lawrence Erlbaum Associates, 1981.

d Norman, Donald A., ed. Perspectives on Cognitive Science.

Norwood, NJ: Ablex, 1981.

Norman, Donald A. Learning and Memory. San Francisco:

W. H. Freeman, 1982.

Norman, Donald A. The Psychology ofEveryday Things. New
York: Basic Books, 1988.

Norman, Donald A., and Stephen Draper, eds. User Centered

System Design. Hillsdale, NJ: Lawrence Erlbaum Associates,

1986. Compilation of articles by nineteen authors.

D Norman, Donald A., and David E. Rumelhart. Explorations in

Cognition. San Francisco: W. H. Freeman, 1975.

Appendix C: Recommended Reading 135

Pfaff, G., ed. User Interface Management Systems. New York:

Springer-Verlag, 1985.

Schneiderman, Een, ed. Data Bases: Improving Usability and
Effectiveness. New York: Academic Press, 1978.

Schneiderman, Ben. Software Psychology: Human Factors in

Computer and Information Systems. Cambridge, MA: Winthrop

Publishers, 1980.

Schneiderman, Ben. Designing the User Interface: Strategies

for Effective Human-Computer Interaction. Reading, MA:

Addison-Wesley, 1987.

Simpson, H. K. Programming the Macintosh User Interface.

New York: McGraw-Hill, 1986.

Smith, H. T., and T. R. G. Green, eds. Human Interaction with

Computers. New York: Academic Press, 1980.

Vassilou, Y. Human Factors and Interactive Computer Systems.

Norwood, NJ: Ablex, 1982.

D Whitney, Patrick, and Cheryl Kent, eds. Design in the

Information Environment. New York: Knopf, 1985.

Periodicals

D Cognitive Science. Journal of the Cognitive Science Society.

Ergonomics. Published by the Ergonomics Research Society,

London, quarterly since 1957, monthly since 1982.

D "Human Factors in Computing Systems," annual issue of the SIG-

CHI Bulletin, the journal of ACM's SIG-CHI (the Association for

Computing Machinery's Special Interest Group on Computers

and Human Interaction). Once a year, the Bulletin is devoted to

the proceedings of SIG-CHTs annual meeting.

d Human Factors.- thefournal of the Human Factors Society. Santa

Monica, California. Published since September 1958.

Human Factors Review. Published by the Human Factors Society

Santa Monica, California. Published since 1985.

IEEE Transactions on Systems, Man, and Cybernetics.

InternationalJournal ofMan-Machine Studies.

d Proceedings of the Annual Conference of Cognitive Science

Society.

136 Appendix C: Recommended Reading

Index

About command (Apple menu) 75

accumulating attributes 67, 86

actions

finite set of 8

keyboard 30

remember-and-type 4-5

reversible 8, 13

see-and-point 4-5, 27

active end (selection) 114

adjectives in menu items 66-67

aesthetics 9

Alarm Clock 63

alert boxes 11, 23-24. See also

beeps; dialog boxes; messages

appearance of 6l

clarity of 62

classes of 61

closing 23

color and 35

contents of 6l

dismissing 24, 98, 99

icons 6l

kinds of 11

localizing 129

modes, number of 12

multistage 62

placement of 55

standard controls in 24

alerting users with sound 36

alphabetical order, international

differences 125

alphabets, non-Roman 128

alternate screens. See screens

analog controls 57

anchor point (selection) 109, 114

animation 4, 11

Apple-? 72

Apple-B 73

Apple-C 72, 83

Apple Computer, Inc., divisions of

Developer Relations xii

Human Interface Group xii

Office of Special Education

Programs 16

Technical Publications Group xii

Apple computers. See specific

computer

Apple Desktop Interface. See also

interface or specific topic

elements of 20-30

paradigms of 5

purpose of xi

roots of 123-124

specifications of 39-121

Apple-I 73

Apple key 30, 45, 69, 91, 101

AppleLink, progress dial in 95

Apple menu 26-27, 74-75

About command 75

desk accessories and 64

Help command 72

Apple-N 72

Apple-O 72

Apple-P 73

Apple-period (.) 73

Apple-Q 30, 72

Apple-S 72

Apple symbol 69

Apple II computer 10

Apple-U 73

Apple-V 72, 83

Apple-X 72, 83

Apple-Z 72, 82

application icons 41

applications 42. See also Finder or

specific topic

changing 40

compatibility of 40

consistency of 6

copyright information 75

documents and 40

graphics 63

interchanging data

between 80-81

for international

markets 125-129

launching 21, 40

manipulating 21

music 17

principal 40

quitting 13, 26-27

secondary 40

special menus and 69

version numbers of 75

versus desk accessories 64

voice-synthesis 17

Arabic Interface System 128

arrays 107, 110-111, 116-117

arrow keys 102-104

modifier keys and 104

selecting with 113-114

Shift key and 102

arrow pointer 28-29, 94

arrows, scroll box 50

ASCII code table 125

attributes, accumulating and

toggled 86

Index 137

Augmentation Research Project

(SRI International) 123

auto-repeat 101

autoscroll 97

B

background

color and 34

desktop 21

Backspace key 82, 83, 99, 118

bars. See specific bar

beachball pointer 29, 94, 95

beeps 60, 62. See also alert boxes;

dialog boxes; messages

bit-mapped graphics 123

blue 34

Bold command (Style menu) 68,

69, 73, 86

boldface mode 12

boxes. See specific box

brightness 31. See also color

browsing menu items. See

menus/menu items

buffer, mouse movements

saved in 97

buttons 56. See also specific

button

clicking 23, 56

default 56, 58, 59, 61

dimmed 76

labels on 56, 62

mutually exclusive 57

number of 10

pressing 56

Calculator 63

Cancel button 56, 59

Cancel command (alert

message) 62

canceling activities 13, 27, 30. See

also Undo command
capital letters. See letters

Caps Lock key 30, 100

caution alert 6l

cells 107

changing

applications 40

saving changes 43

window size 46-48

character keys 4, 30, 98-99, 101

characters

non-Roman 127

special 100

typographical 84

character strings 1 1

1

check boxes 56, 68

check buttons, alert boxes and 6l

check marks 69, 86

Chicago font 66, 86

Chooser 63

choosing. See selecting

clarity 1

1

Clear command (Edit menu) 27,

67, 80, 83, 99

Clear key 99

clicking (mouse technique) xii, 28,

95, 108, 111-112

Clipboard 73, 80-81, 124

Backspace key and 99

Cut and Paste and 83

hiding 81, 84

showing 81, 84

close box 22-23, 42-45, 92

Close command (File menu) 45,

77

closing

alert box 24

dialog box 23, 60

documents 77

tear-off menus 92

windows 22-23, 43

cloverleaf key. See Apple key

cloverleaf symbol 69

codes, data compression 125

color 16, 30-35

contrast of 33-34

cultural meaning of 31-32

defined 31

discrimination of 33-34

principles of design with 32-33

standard uses of 31

colorblindness 33

color monitors 32

color printers 32

Color QuickDraw 33

columns 107, 116

Command key. See Apple key

command-line interface 5, 93

commands 6, 9- See also specific

command
communication 9-l6. See also

feedback; language, plain

compatibility 40

consistency 6, 9-11

context. See modes
contrast (of color) 33-34

Control key 30, 101

Control Panel 21, 96, 101

controls 55-57

analog 57

check-box 68

menus and 66

setting in dialog boxes 58

standard 24

Copy command (Edit menu) 27,

66-67, 72-73, 80, 81, 95

copying applications and

documents 21-22

copyright information 75

crosshair pointer 29, 94

cues, visual 1

1

cultural meaning of color 31-32

cursors, function of 93-97

customs, international

differences 126

cut and paste, intelligent 119-120

Cut command (Edit menu) 27, 62,

67, 72-73, 80, 81, 83

D

data

graphic objects and 9

interchanging between

applications 80-81

panels and 55

data compression codes 125

data files. See documents

data type, selection by 111-117

dedicated function keys 105

default buttons 56, 58, 59, 61

delays, processing 7

Delete key. See Backspace key

deleting 21-22, 99

accidental, prevention of 22

applications 21-22

documents 21-22

138 Index

selection 30, 99, 109-111, 119

Del function key 105

deselecting 109-111

design principles 3-17. See also

visual design

desk accessories 63-64. See also

specific desk accessory

Apple menu and 74-75

commands for 27

installing 64, 73

menus and 64

removing 64

versus applications 64

as windows 64

desk accessory menu. See Apple

menu
desktop 20-22, 40-42. See also

Finder

appearance of 21, 40-41

cluttering 44

pattern 21

real-world metaphors and 3

returning to 22

specifications of 40-42

subsystems of 41-42

Desktop Interface. See Apple

Desktop Interface or specific

topic

Developer Relations (Apple

Computer, Inc.) xii

device drivers 26-27

diacritical marks 127

dialog, human-computer. See

human-computer interaction

dialog boxes 23-24, 56, 98, 99,

124. See also alert boxes;

beeps; messages

appearance of 23

buttons in 23

Close 77

color and 35

dismissing 23, 98, 99

layout of 58

localizing 129

menu items and 66

modal and modeless 58-60

Open 76

Page Setup 79

placement of 55

Print 23, 80

Revert to Saved 79

Save As 78-79

Save Changes? 80

standard controls in 24

dials 57, 6l, 95

digital display 57

dimmed menus 25-26, 65, 69

direct manipulation 4, 27

disabilities, user 16-17

discontinuous selection in

arrays 117

discrimination (of color) 33-34

disk icons 21, 41

disks 4, 6, 42

dismissing alert boxes 24, 98, 99

display, digital 57

document icons 41

documents 42. See also Finder

applications and 40

changing 78

closing 77

copying 6

identical 78

manipulating 4, 21, 26-27, 49,

76

saving 13, 43

size of 51

views of 42-43

document windows. See windows
Don't Save command (alert

message) 62

dotted lines in menus 67

double-clicking (mouse

technique) 96

Double Space command 66

Down Arrow key 102-103

drag delay 87

dragging (mouse technique) xii, 5,

28-29, 95-97

indicators 57

scroll box 49, 51

tear-off menus 91-92

windows 45, 48

Drive button 76

drivers 26-27

edit checks 121

Edit menu 26-27, 60, 73, 80-84

appearance of 26-27

Clear command 27, 67, 80, 83,

99

Copy command 27, 66-67,

72-73, 80, 81, 95

Cut command 27, 62, 67,

72-73, 80, 81, 83

Hide Clipboard command 81, 84

keyboard equivalents and 72-73

Paste command 27, 72-73, 80,

81, 83

Redo command 68, 82

Select All command 84

Show Clipboard command 81, 84

Undo command 27, 29, 68,

72-73, 80-81, 82

editing. See edit checks; Edit menu;

fields; text

Eject button 76

ellipsis, in menu items 23, 58, 69

empty documents, insertion point

in 103

End function key 105

entering text 12, 27, 30, 98

Enter key 6l, 98

error conditions 12, 60

error messages. See alert boxes;

messages

Escape key 73, 99

event loop 13

feedback 4, 7, 22-23, 29, 109

fields

arrays and 107

editing 120-121

selecting 116

File menu 26-27, 45, 75-80

appearance of 26-27

Close command 45, 77

keyboard equivalents and 72-73

New command 76

Open command 72, 76-77

Page Setup command 79

Print command 80

Quit command 26-27, 30, 67,

72-73

Revert to Saved command 79

Save As command 78-79

Index 139

Save command 72, 78

files. See documents

Find command 66

Finder 21, 40-42, 64, 67, 74, 77.

See also desktop

folder icon 41

folders 42

browsing 76

dragging icons into 5

moving documents to and

from 4

font(s) 84

Chicago 66, 86

international 127

Option key and 100

sans serif 84

scaled 85

sizes 85

SysFontSize 127

system font 127

font choices 6

Font/DA Mover 64

Font menu 74, 84-85

font-related menus 84

FontSize menu 74, 85

forgiveness 8

Format menu 68

formatting 6, 68

forms. See tables

frame, window 42

function keys 50, 105

graphic(s) 108, 115-117. See also

animation; objects

bit-mapped 123

design principles 9-l6

drawing tools, manipulating 4

elements, consistency of 8

printing 6

selections in 115-117

graphic menus. See palettes

gray 33

green 31

hand-held devices. See specific

device

handles (in MacDraw) 115

hardware independence 11

Help command (Apple menu) 72

Help function key 105

HFS (Hierarchical File System) 76

Hide Clipboard command (Edit

menu) 81, 84

Hide Rulers command (Format

menu) 68

Hierarchical File System (HFS) 76

hierarchical menu indicator 87

hierarchical menus 87-88

highlighting

color and 35

topics 4

Home function key 105

hot spot 94

hot zone 94

hue 31. See also color

human-computer interaction xi,

2-9, 10-11, 13-14, 27-30

Human Interface Group (Apple

Computer, Inc.) xii

I-beam pointer 28-29, 94

icon(s) 41, 42. See also specific

icon

alert box 6l

clarity of 11, 14

manipulation of 5

menus and 66, 69

roots of 123

idle programs 63

independence, hardware 11

indicators 57, 95

information, structuring 106-107

insertion point 51-52, 93-97,

111-112

in empty documents 103

moving 52, 102-103

Tab key and 98

Inside Macintosh 126

interface. See also Apple Desktop

Interface

command line 5, 93

consistency of 10

direct manipulation 4, 27

elements, standard classes of 20

human-computer xi, 2-9,

10-11, 13-14

look and feel of 20

international markets, software

for 125-129

International Standards Organization

(ISO) 102

International Utilities Package

(ROM) 128

inverse video 29

Italic command (Style menu) 68,

69, 73, 86

joysticks 28

Kanji Interface System

(KanjiTalk) 128

keyboard(s) 27, 30, 98-105

international 102, 126

U.S. 102

keyboard equivalents 5, 72-73,

86, 87

keys. See also function keys;

numeric keypad or specific key

auto-repeat 101

character 30, 98-99, 101

modifier 30, 98, 100-101

nonalphabetic 100

symbol 100

two-character 100

keystrokes

macros for 17

queuing 101

labels. See buttons

language, plain 14, 23

languages

international 42, 125

programming 113

large screens. See screens

laws, international differences 126

layout, spatial 6

Left Arrow key 102-103

letters

140 Index

lowercase 86, 127

small caps 86

uppercase 30, 67, 72, 86, 100,

127

lighting, color and 33

Lisa computer 124

lists (one-dimensional arrays) 107

localization 42, 125

long-term modes 12

loop, event 13

lowercase letters 86, 127

low memory variable 128

M

MacDraw xii, 91, 46, 115

Macintosh computer 10, 48, 102,

124, 126. See also ROM
Macintosh Resource Manager 126

Macintosh Toolbox, controls and 56

MacPaint xii, 13, 90-91, 94, 115

macros 17

MacWrite xii, 22

magnification, variable 46

manipulation, direct 4

manuals 8

electronic 17

MBarHeight (ROM) 128

memory variable, low 128

Menu Manager (ROM) 128

menus/menu items 3-5, 24-27,

65-92. See also specific menu
activities 65

adjectives in 66

appearance of 67-71

application-specific 25

browsing 25-26, 66, 76

capital letters in 67

choosing 66

clarity of 14

closing 66

color and 35

commands, choosing 55

controls in 66

desk accessories and 64

dimmed 25-26, 65, 69

dotted lines in 67

ellipsis in 23, 58, 69

font-related 84

grouping 67-68

hierarchical 87-88

icons in 66, 69

keyboard equivalents for 5,

72-73, 86, 87

naming 25

nouns in 66

opening 65

palettes 69, 70, 90-91

pop-up 88-90

pull-down 3, 66

scrolling 71

selecting 25-26

special characters in 69

standard 25, 74-86

tear-off 91-92

titles of 65

toggled 68, 81, 84

types of 87-92

verbs in 66

visual features of 69, 70

messages 8, 14, 62. See also alert

boxes; beeps; dialog boxes

metaphors, real-world 3, 12, 20,

22-23. See also desktop

mnemonic shortcuts 126

modes
acceptable 12

boldface 12

indicating 90

long-term 12

modelessness 12-13

pointers and 28-29, 94

short-term 12

underlining 12

using sound to differentiate 36

modifier keys 30, 98, 100-101,

104. See also keyboard

equivalents

monitors, color 32

mouse 5, 27-28, 93, 123

mouse button 28, 45-46, 51, 53,

66, 93, 95

clicking 95

double-clicking 96

pressing 28, 96

triple-clicking 96

mouse cable 93

mouse techniques xii, 5, 11,

27-29, 95-97

macros for 17

modifier keys and 98

mouse-ahead function 97

pointing xii, 11, 27

saving in buffer 97

moving. See also dragging

applications and documents 4,

21

insertion point 103

menus 91

scroll box 50

windows 45

music applications 17

mutually exclusive attribute groups

(menu items) 67

N

naming objects 30

New command (File menu) 72, 76

nondedicated function keys 105

non-Roman alphabets 128

note alert 6l

Note Pad 63

noun-verb principle 24, 29, 106

nouns in menu items 66

numeric keypad 113

objects, graphic 8-10, 29,

109-111- See also graphic(s) or

specific object

coloring small 34

deselecting 109-111

dragging 29, 97, 109

finite set of 8

location of 21

manipulating 27, 93

naming 30

parameters and 9

placement of 8

selecting 29, 106-117

size of 21

types of 106-108

OK button 56, 59, 62, 69

Open Apple key. See Apple key

Open command (File menu) 76-77

opening

documents 76

windows 22-23, 43

Index 141

Option key 30, 100

options, printing 13

orientation, visual/spatial 4-5

Outline command (Style menu) 68,

69

outlines, color and 34

Page down function key 105

page numbers (in scroll box) 51

Page Setup command (File

menu) 48, 79

Page up function key 105

palettes 69, 70, 90-91

panels 55

panes, scrollable 53-55

paradigms 5, 30, 104

parameters, graphic objects and 9

Paste command (Edit menu) 27,

72-73, 80, 81, 83

paste operations 52, 119-120

pattern, desktop 21

pixels 10, 115

plain language 14, 23

Plain Text command (Style

menu) 68, 73, 86

plus sign pointer 29

pointer(s) 28-29, 90, 93-97

color and 35

dragging 66, 93

position of 51

shapes of 28-29, 94

pointing (mouse technique) xii, 11,

27

pointing devices 5, 27-28, 93-97,

102. See also specific device

points, font sizes and 85

pop-up menu indicator 89

pop-up menus 88-90

pressing (mouse technique) 28, 96

principles 3-l6, 24, 29, 32-33,

34-35, 37, 106

Print command (File menu) 80

printers

Braille 17

color 32

printing 6, 13

programming 11-16, 113

programs. See applications

progress indicators 95

pull-down menus. See

menus/menu items

punctuation, international

differences 125

queuing keystrokes 101

QuickDraw (Color) 33

Quit command (File menu) 26-27,

30, 67, 72-73

quoted strings, translation of 125

radio buttons 57, 6l, 67

range selection 109, 111-113,

116-117

realism, photographic 10

real-world metaphors. See

metaphors, real-world

recognition versus recall 5, 24

red 31

REdit tool 126

Redo command (Edit menu) 68,

82. See also Undo command
Reduce to Fit command

(MacDraw) 46

redundancy

color and 32

sound and 37

reference points, stable 8

remember-and-type actions 4-5

renaming applications and

documents 21

repeating keys 101

replacing text 118

requests, local 13

ResEdit tool 126

Resource Manager 126

Return key 61, 82, 99, 116

reversible actions 8, 13

Revert to Saved command (File

menu) 79

Right Arrow key 102-103

ROM 11, 46, 127-128

rows, selecting 116

rulers 63, 68

sans serif font 84

saturation 31. See also color

Save As commant (Fil

"

menu) 78-79

Save Changes? dialog box 80

Save command (alert message) 62

Save command (File menu) 72, 78

saving changes 13, 43

scaling views 46

screens 10-11, 14, 20-27, 101,

103

placement of dialog/alert boxes

on 55

size of 48

Script Manager (ROM) 127, 128

scripts, international 127, 128

scroll arrows 50

scroll bars 3, 22-23, 42-43,

44-45, 46-54, 57

color and 35

gray area 49-50

horizontal and vertical 49, 53-54

panels and 55

split windows and 53-54

scroll box 49-51

scrolling 12, 22-23, 49-52

after a search 52

autoscroll 97

horizontal 52

menus 71

with scroll arrows 50

vertical 49, 50, 52

by windowful 50

scrolling menu indicator 71

see-and-point actions 4-5

Select All command (Edit

menu) 84

selecting 29, 106-117

columns 116

fields 116

menu items 25-26, 27

objects 29, 106-117

rows 116

text 1 1

1

words 112

selection 29, 106-117

active end 114

anchor point 114

142 Index

in arrays 116-117

arrow keys and 113-114

by clicking 108

color and 35

by data type 111-117

discontinuous 109-111

extending or shrinking 109

in graphics 115-117

in MacDraw 115

in MacPaint 115

methods of 108-117

by range 109, 111-113

scrolling after 52

in text 111-114

undoing 29, 99, 109-111, 119

visual cues for 29

semantic modifier 104

serifs 84

settings, changing. See controls

Shadow command (Style

menu) 68, 69, 86

shapes, pointer 28-29

Shift-arrow key 113-114

Shift-click 109

Shift key 12, 30, 72, 100, 102,

109, 113-114

short-term modes 12

Show Clipboard command (Edit

menu) 81, 84

Show Rulers command (Format

menu) 68

size box 22-23, 42-43, 44-45

Size menu. See FontSize menu
small caps 86

snapshot, screen 101

software. See applications

sound 17, 36-37

spatial orientation 4, 6

special characters 69, 100

Special Education Programs,

Office of 16

specifications 39-121

spelling checkers 63, 74

spinning beachball pointer 29, 94,

95

split bars 53-54

split windows 42, 53-54

SRI International 123

stability, illusion of 8, 25, 40

stationery files 42

stationery icons 41, 78-79

Stationery option 78-79

status indicator 95

stop alert 6l

strings 125-126

Style menu 56, 68, 69, 73, 74, 86

Bold command 68, 69, 73, 86

Italic command 68, 69, 86

keyboard equivalents and 73

Outline command 68, 69

Plain Text command 68, 86, 73

Shadow command 68, 69, 86

text styles in 69

Underline command 66, 68, 69,

73, 86

styluses 28

submenu delay 87

submenus. See hierarchical menus
subscript 86

superscript 86

symbol keys 100

SysFontSize 127

System file 74

system font 127

Tab key 82, 98, 116

tables 107, 116-117

tear-off menus 91-92

Technical Publications Group (Apple

Computer, Inc.) xii

templates. See stationery files

testing 15-16, 37

text

arranging 107

color 34, 35

editing 118-121

enlarged 16

entering 12, 27, 30, 98

inserting 118

printing 6

replacing 118

scrolling 12

selecting 12, 111-114

TextEdit resource 120

text fields 58, 61

title bar 22-23, 42-43, 44-45, 46

color and 35

toggled menu items 56, 68, 81,

84, 86

Toolbox, controls and 56

tools, ROM-based 11, 46, 127-128

track balls 28

training materials, color and 35

translation 42, 125

Transliterate routine (Script

Manager) 127

Trash icon 5, 22, 41, 42, 124

triple-clicking (mouse

technique) 96

tutorial materials, color and 35

type-ahead 101

typeface. See font(s)

typographical characters 84

U

Underline command (Style

menu) 66, 68, 69, 73, 86

underline mode 12

Undo command (Edit menu) 27,

29, 80-81, 82

function of 82

keyboard equivalent for 72-73

operations that can't be

undone 82

toggled 68

undoing selections 29, 99,

109-111, 119

units, international differences 126

Up Arrow key 102

uppercase letters 30, 67, 72, 86,

100, 127

UprString routine (Macintosh

ROM) 127

User Interface Toolbox, TextEdit

resource in 120

user control 7

of color 33

of sound 37

users 4

disabled 16-17

model of 2-3

user testing 15-16, 37

utilities 63- See also specific utility

Index 143

verbs in menu items 66-67

version numbers 75

video, inverse 67

View menu (Finder) 67

views, document 42-43- See also

windows

multiple 44

scaling 46

visual design, advantages of 3-5,

8-11

visual features of menus 69, 70

voice-synthesis applications 17

word order, international

differences 125

word processors 74

words

definition of 112-113

selecting 112

word wraparound 118

wristwatch pointer 28-29, 95

WYSIWYG (what-you-see-is-what-

you-get) 6-7

Xerox PARC 123

W
what-you-see-is-what-you-get

(WYSIWYG) 6-7

windows 21-23, 42-48. See also

views

active 44-45, 49

appearance of 22-23

closing 43

color and 35

components of 42-43

desk accessories as 64

document 22-23, 40, 42-43, 51

dragging 45, 48

frame 42

inactive 44-45

MacWrite 22

moving 43-45

multiple 42-44

number of 10

opening 43

overlapping 44

positioning after scrolling 52

resizing 46-48

roots of 123

shape of 42-43

size of 44, 46-48

specifications of 42-48

split 42, 53-54

standard 22-23

standard state of 48

structure of 42-43

types of 53-54

user-selected state of 47-48

Y
yellow 31

zoom box 22-23, 44-47

zooming windows 22-23, 46-47

zoom window 42-43, 48

144 Index

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,

edited, and composed on a

desktop publishing system using

the Apple Macintosh™ Plus and
Microsoft® Word. Proof and
final pages were created on the

Apple LaserWriter™ Plus.

POSTSCRIPT™, the

LaserWriter's page-description

language, was developed by
Adobe Systems Incorporated.

Text type is ITC Garamond®
(a downloadable font distributed

by Adobe Systems). Display

type is ITC Avant Garde

Gothic®. Bullets are ITC Zapf

Dingbats®. Program listings are

set in Apple Courier, a

monospaced font.

Apple
5

The Official

Publicationfrom

.Apple Computer, Inc.

Human Interface Guidelines:

The Apple Desktop Interface

>«m-qs fpt
USA

Created by the people at Apple Computer, this is the definitive guide to the Apple

Desktop Interface— the graphics-based "windows and menus" interface first made

popular on the Macintosh® computer. This book is for everyone who wants to

implement the Apple Desktop Interface on any Macintosh or Apple n computer.

It includes the following topics:

• The philosophy and history behind the Apple Desktop Interface.

• The design principles and metaphors upon which the interface is based.

• Detailed specifications for how the elements of the interface should work—how to

use the windows, menus, dialog boxes, and controls that make up the Apple Desktop

Interface.

• How to integrate color and sound into the interface.

• Guidelines on designing for international markets and for handicapped users.

About the cover: This design represents a new look for the original edition ofHuman
Interface Guidelines: TloeApple Desktop Interface and the other books in the Apple

Technical Library. The contents have not been changed.

Apple Computer, Inc.

20525 Mariani Avenue

Cupertino, California 95014

(408)996-1010

TLX 171-576

Addison-Wesley Publishing Company, Inc.

Printed in USA.

5 1 495

9 '780201"177534

ISBN D-2G1-17753-L

