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Much contemporary rhetoric regards the prospects and pitfalls of
using artificial intelligence techniques to automate an increasing
range of tasks, especially those once considered the purview of
people alone. These accounts are often wildly optimistic, under-
stating outstanding challenges while turning a blind eye to the
human labor that undergirds and sustains ostensibly “automated”
services. This long-standing focus on purely automated methods
unnecessarily cedes a promising design space: one in which com-
putational assistance augments and enriches, rather than replaces,
people’s intellectual work. This tension between human agency
and machine automation poses vital challenges for design and engi-
neering. In this work, we consider the design of systems that enable
rich, adaptive interaction between people and algorithms. We seek to
balance the often-complementary strengths and weaknesses of each,
while promoting human control and skillful action. We share case
studies of interactive systems we have developed in three arenas—
data wrangling, exploratory analysis, and natural language transla-
tion—that integrate proactive computational support into interac-
tive systems. To improve outcomes and support learning by both
people and machines, we describe the use of shared representations
of tasks augmented with predictive models of human capabilities and
actions. We conclude with a discussion of future prospects and scien-
tific frontiers for intelligence augmentation research.

visualization | data science | artificial intelligence |
human–computer interaction | automation

Although sharing overlapping origins in midcentury computer
science, research programs in intelligence augmentation

(IA; using computers to extend people’s ability to process in-
formation and reason about complex problems) and artificial
intelligence (AI; developing computational methods for per-
ception, reasoning, and action) have to date charted largely
separate trajectories. The former, beginning with the work of
early luminaries such as Douglas Engelbart and Alan Kay—and
continuing in the modern field of human–computer interaction
(HCI)—led to now-ubiquitous technologies such as the personal
computer, graphical user interfaces, the web browser, and touch-
driven mobile devices. Meanwhile, AI has similarly contributed
to numerous innovations, from spam filters, fraud detection, and
medical diagnostics to recent developments in autonomous ve-
hicles. Advances in the AI subfield of machine learning (ML),
including the resurgence of neural network approaches trained
on increasingly large datasets, has fed a frenzy of both research
and industrial activity.
However, current rhetoric around AI often exhibits a myopic

focus on fully-automated methods, for example, as a replace-
ment for human labor. Certainly, people have their lapses. We
do not “scale” to large repetitive tasks, we may commit errors in
judgment due to insufficient information or cognitive biases, and
we may have ambiguous intents that AI systems might help re-
fine. Nevertheless, a sole focus on automation is concerning for
multiple reasons. Automated approaches may mislead due to
inappropriate assumptions or biased training data and may op-
timize fixed objectives that do not adapt in the face of changing
circumstances or adversarial manipulation. In addition, users

of such systems may come to overly rely on computational
suggestions, leading to a potential loss of critical engagement
and domain expertise. Real-world examples of such pitfalls range
from flawed disease predictions (1) to preventable airplane
crashes resulting from failed coordination among automated
systems and the flight crew (2, 3). As these examples illustrate,
safeguarding human agency is not only a value to uphold, but
in many cases a necessity for effective and appropriate use.
This state of affairs has prompted prominent ML researchers to

call for more “human-centered” approaches to AI. For example,
Li (4) writes that a major goal of AI should be “enhancing us, not
replacing us,” while Jordan (5) notes that we “need well-thought-
out interactions of humans and computers to solve our most
pressing problems.” AI experts are thus “rediscovering” HCI and
recognizing the need to integrate AI and IA perspectives.
Although both exciting and overdue, we should note that the

goal of integrating agency and automation is hardly new. In the
early 1960s, Bar-Hillel (6) wrote (in the context of natural language
translation): “The decisive problem becomes to determine the re-
gion of optimality in the continuum of possible divisions of labor”
between people and computers. In the 1990s, HCI and AI re-
searchers engaged in debate over direct manipulation vs. interface
agents (7), arriving at a consensus in support of “increased auto-
mation that amplifies the productivity of users and gives them in-
creased capabilities in carrying out their tasks, while preserving their
sense of control and their responsibility.” Meanwhile, research
on creativity support tools (8) has explored nonanthropomorphic
modalities for interacting with automated methods, including si-
multaneous interaction with multiple design alternatives (9) and
integration of manual input and procedural programming (10).
Still, the need to productively couple agency and automation

poses vital challenges for design and engineering. How might we
effectively integrate automated reasoning into user-centered in-
teractive systems? We examine one promising strategy: the
design of shared representations of possible actions, enabling
computational reasoning about people’s tasks alongside inter-
faces with which people can review, select, revise, or dismiss
algorithmic suggestions.
Rather than jumping right to the goal of imitating “human-

level intelligence,” we can take inspiration from a more humble
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starting point: augmentation within everyday interactions, so tightly
integrated into our work that we take it for granted. Consider
spelling- and grammar-checking routines included within word
processors, which unobtrusively highlight problematic spans of text
to help authors discover and correct writing errors (Fig. 1). Or,
consider autocompletion of text input, as when issuing queries to an
Internet search engine: Automatic, yet easily dismissible, sugges-
tions can accelerate search and refine ambiguous intents (Fig. 2).
While modest in scope, these examples exhibit a number of useful

principles for structuring interactions between people and compu-
tational assistants. First, they provide significant value, promoting
efficiency, correctness, and consideration of alternate possibilities
that a user might not have otherwise considered. Second, they aug-
ment, but do not replace, user interaction: These aids blend into the
interactive experience in a nondisruptive manner and can be directly
invoked or dismissed. Third, these augmentations require neither
perfect accuracy nor exhaustive modeling of the user’s task to be
useful (e.g., consider the subtask of “spelling” vs. the more general
goal of “writing”). Fourth, through interaction, both people and
machines can incrementally learn and adapt (e.g., autocomplete may
alert a search-engine user to relevant related topics, while other user
queries may train the system for future recommendations). These
and other principles for “elegant coupling of automated services with
direct manipulation” are articulated in Eric Horvitz’s Principles of
Mixed-Initiative User Interfaces (11)—required reading for anyone
interested in the intersection of AI and HCI.
In this work, we review approaches to reconciling agency and

automation—and realizing the principles above—through the
judicious codesign of user interfaces and enabling algorithms.
Our goal is to productively employ AI methods while ensuring
that people remain in control: unconstrained in pursuing com-
plex goals and exercising domain expertise. We will consider
three case studies, drawn from the areas of data wrangling, data
visualization for exploratory analysis, and natural language
translation. Across each, we examine the strategy of designing
shared representations that augment interactive systems with
predictive models of users’ capabilities and potential actions,
surfaced via interaction mechanisms that enable user review and
revision. These models enable automated reasoning about tasks
in a human-centered fashion and can adapt over time by ob-
serving and learning from user behavior. We conclude with a
discussion of future challenges and opportunities.

Data Wrangling
Data analysts spend much of their time (sometimes 80% or
more) cleaning and formatting data to make it suitable for
analysis (12). As a result, domain experts often expend more
effort manipulating data than they do exercising their specialty,
while less technical users may be excluded from working with
data. This “data-wrangling” work is fundamentally a program-
ming task: Users must determine a sequence of transformations
of input data, mapping it into a more usable and actionable form.
In the Data Wrangler project (13, 14), we explored means for

users to create data-transformation scripts within a visual, direct
manipulation interface augmented by predictive models (Fig. 3).
We initially explored interface gestures for expressing transfor-
mations, but this led to ambiguity, as the same gesture might be
used for different transformations. For example, if you select a

span of text, do you intend to extract text, replace text, or split up
the text? However, we realized that for a range of simple in-
teractions (such as row, column, and text selection), only a lim-
ited number of transformations typically apply. We also observed
that while most users had a sense of the transforms they wanted
to perform, they may not know the precise names or semantics.
These insights led us to an approach we call predictive in-

teraction (15), analogous to autocomplete, in which simple se-
lections guide automatic predictions of which transformations to
apply. The central idea is to imbue software with domain-specific
models of user tasks, which in turn power predictive methods to
suggest a variety of possible actions. As users select columns,
rows, or cell contents within a table grid, Wrangler reasons about
the space of possible actions compatible with the user’s selection
and provides “autocomplete” suggestions. Suggested actions are
visualized to convey their effect on the data, facilitating human
assessment of recommended actions. The result is an altered
form of interaction: While users can still directly author trans-
formations (e.g., using command menus or writing code), they
can also engage in a guide–decide loop, in which initial inter-
actions provide evidence of the user’s intent, leading to sugges-
tions that a user can then accept, refine, or dismiss. We bootstrapped
our initial recommender system from a set of heuristic rules,
then observed user actions over time to collect training data and
adaptively improve the suggestions.
To reason about potential actions, we designed Wrangle, a

high-level domain-specific language (DSL) for data trans-
formation. Wrangle is a specialized programming language that
expresses the necessary operations for cleaning, aggregating, and
integrating data. The language also serves as a formal model for
reasoning about user actions: We can search over the space of
language statements to enumerate and recommend potential
transforms. Put another way, the language provides a shared
representation through which people and algorithms can work in
tandem to achieve a shared objective (here, properly transform
data). The use of a DSL also provides an abstraction layer be-
tween client-side concerns (reasoning about actions and visual-
izing results) and server-side concerns (taking the produced
transformation script and compiling it to run efficiently across
a computing cluster).
In initial user studies (13), we found multiple benefits for the

predictive interaction approach, including increased productiv-
ity (faster completion times) and users’ discovery of useful
transforms in response to initially ambiguous intents. We also
experimented with “proactive” suggestions (14) that use mea-
sures of data table quality to automatically suggest transforms
without need of an initiating user interaction. We found that
many users expressed a desire to maintain control and roundly
ignored suggestions presented before interaction with the table
grid. However, users did not express similar concerns when
proactive suggestions were inserted among “reactive” sugges-
tions specific to an initiating interaction, even though they were
actually unrelated to the user’s input. User assessment of sug-
gestions appeared to improve when users saw themselves as the
initiators.
We have subsequently commercialized this line of work by

founding Trifacta, a provider of interactive data-transformation

Fig. 1. Word processor with spelling and grammar checking annotations:
a simple yet ubiquitous example of IA. (Text adapted from Douglas
Engelbart’s 1961 proposal Program On Human Effectiveness; ref. 29.)

Fig. 2. Internet search query autocompletion. In addition to showing vari-
ous completions, the recommendations suggest refinements of user intent,
such as retrieving the impact factor of PNAS.
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tools. Real-world customer experiences have informed addi-
tional design iterations. In particular, we have made significant
investments not only in improving ML performance, but also in
creating structured graphical editors for Wrangle statements.
Among other benefits, these editors help users edit “close, but
not perfect” suggestions to fit their objectives—providing an
improved shared representation for review and revision of
automated recommendations.

Data Visualization for Exploratory Analysis
Once a dataset has been suitably cleaned and formatted, it can
serve as input to further exploration and modeling. Exploratory
data analysis (EDA) involves inspecting one’s data—typically by
using visualization techniques—to assess data quality and ensure
that modeling assumptions are met, or to develop and refine
hypotheses that might then be tested in future studies. The
process of EDA can be highly iterative, involving both open-
ended exploration and targeted question answering.
Making data-transformation and visualization-design decisions

while exploring unfamiliar data are nontrivial. Analysts may lack
exposure to the shape and structure of their data or begin with
vague analysis goals. Decisions of which data to inspect and how
to properly visualize it often depend on both domain and visu-
alization design expertise and require a tedious specification
process that impedes exploration. Moreover, analysts may ex-
hibit premature fixation on a hypothesis of interest, overlooking
data-quality issues or potentially confounding factors.
Voyager (Fig. 4) is an interactive system for exploratory

analysis that blends manual and automated chart specification to
help analysts engage in both open-ended exploration and tar-
geted question answering (16, 17). Upon initially viewing a
dataset, Voyager populates a gallery of univariate summaries for
each column in a data table, encouraging more systematic con-
sideration of data fields and potential quality or coverage issues.
Users can also manually construct charts using drag-and-drop
interactions, mapping selected data fields to visual encoding
channels such as x position, y position, color, size, and shape.
As users engage in exploration, Voyager recommends related

views based on the current focus chart. The recommended charts

can include summary aggregations (for instance-level charts),
deaggregrated views (for aggregate plots), alternative visual
encodings, and plots incorporating an additional data field.
Rather than perform rampant data mining that may unearth any
number of (possibly spurious) correlations among data fields,
Voyager seeds its search from the current focus view. The rec-
ommendations constitute a “search frontier” sensitive to a user’s
current focus and goals, with automated support parameterized
by observations of user behavior.
Akin to Data Wrangler, Voyager uses a formal language—in

this case the Vega-Lite visualization grammar (18)—as a shared
representation for reasoning about the space of chart designs.
User drag-and-drop actions in the interface map directly to
Vega-Lite chart descriptions. To generate related view recom-
mendations, Voyager also employs effectiveness rankings dis-
tilled from human perceptual studies. Voyager applies logic
programming methods to search a space of related charts and
“solve” for the best recommendations according to a knowledge
base of design guidelines learned from perception experiments
(17, 19). This underlying model is adaptive: In response to user
actions or new perception experiments, we can retrain our
model of preference weights to generate refined chart design
recommendations (19).
Both Voyager and Vega-Lite are available as open-source

projects and have been adopted within the Jupyter notebook and
JupyterLab data science tools. Across multiple user studies, we
have found that judicious suggestions (i.e., those that promote
both data diversity and perceptually effective charts) can lead to
more systematic coverage of a dataset during early-stage explo-
ration. The inclusion of automated support shifted user behav-
ior: Without related views, participants engaged in more targeted
“depth-first” search patterns through the space of visualizations,
whereas the inclusion of recommendations biased users toward
increased consideration of alternative charts and additional data
field combinations (17). Recommended related views also
accounted for a significant proportion of the charts bookmarked
as “interesting” by study participants.
Participants reported that Voyager helped to promote data-

quality assessment and combat confirmation bias due to fixation

Fig. 3. The Data Wrangler interface for data cleaning and transformation, including a table grid (Right) and a transcript of executed transforms (Lower Left).
Here, a user simply selects the text “Alabama” in the first row. The system responds with automatic transform suggestions (Left), such as extracting or cutting
text from table cells. The selected transform extracts text after the span “in.” Visual previews in the table grid visualize the effect of applying the transform.

1846 | www.pnas.org/cgi/doi/10.1073/pnas.1807184115 Heer

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

8,
 2

02
1 

https://www.pnas.org/cgi/doi/10.1073/pnas.1807184115
Andy Matuschak



on specific relationships (e.g., “the related view suggestion
function in Voyager accelerates exploration a lot”). Participants
also stated that recommended views helped them learn how to
use the tool (e.g., “I feel more confident using Voyager. It helped
me to learn”). However, some also noted a shift in their behavior
as a result of the recommendations, with one user reporting:
“These related views are so good but it’s also spoiling that I start
thinking less. I’m not sure if that’s really a good thing.” As we will
discuss, these reflections point to potential design trade-offs and
suggest a need for more comprehensive evaluations of in-
teractive systems that incorporate automation.

Natural Language Translation
Unlike the more complex tasks of data wrangling or exploratory
visual analysis, our initial motivating examples—spell checking
and query autocomplete—involve a basic shared representation
for both input and output: digital text. For those cases, recom-
mendations can be achieved largely via lookup tables or fre-
quency statistics. Although involving similar input/output
domains, a much more difficult task—and a holy grail of AI
research—is natural language translation. Language translation
is a multibillion dollar industry, critical to the dissemination of
science, policy, and culture among the people of the world.
AI researchers have long sought the goal of fully automatic

high-quality translation, but with limited success (20). Machine
translation (MT) is a valuable tool for gisting, but despite im-
pressive progress in recent years, human translators remain the
gold standard for accurate, nuanced, and culturally appropriate
work. As early as the 1950s, researchers envisioned interactive
systems that might balance the strength of manual and automatic

approaches to natural language translation (6, 20), assisting hu-
man translators while also providing valuable training data for
automated systems. However, that vision sat largely unrealized,
partially due to the computing field’s focus on fully-automated
methods, but no doubt also due to insufficient accuracy by past
translation systems: For a long time, MTs were more hindrance
than help, providing insufficient value and making the computer
a rather poor collaborator.
We sought to revisit the vision of interactive translation in the

context of today’s more accurate MT engines. In the predictive
translation memory (PTM) project (21, 22), we investigated
approaches to mixed-initiative language translation, seeking a
virtuous cycle in which machines might automate rote tasks
(improving efficiency) while human professionals provide nu-
anced translation guidance (improving quality). The PTM in-
terface (Fig. 5) consists of an augmented text editor, in which
freeform text is the primary shared representation. Text input is
first initialized with a full MT. To make edits, users can either
begin typing or hover over words to view alternative suggestions.
Upon editing, PTM automatically retranslates parts of the text
not yet touched by the user, taking user edits into account. These
user edits are also used to make incremental training updates to
the underlying translation model, enabling domain adaptation
that can improve MT quality, even in the midst of a session.
The interaction design of the PTM system (21) required great

care. Drawing on Horvitz’s (11) principles, we sought to in-
troduce aids by which MT systems could provide assistance,
while avoiding alterations that might disrupt the fluency of text
entry. These aids include per-word translation lookups upon
mouse hover [allowing efficient direct invocation and termination

Fig. 4. The Voyager system for exploratory visual analysis. Here, an analyst views a chart showing the average fuel efficiency of cars over multiple years
(Upper). The system automatically searches over the space of visualizations to suggest related views (Lower), such as subdividing the data by a categorical field
(cylinder count or region of origin) to provide additional insight.
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(11)], visualizing translation coverage of the source text (main-
taining working memory of recent interactions), and real-time
updates to predicted translation completions in response to a
user’s partial translation (providing mechanisms for efficient
interaction to refine results). Early user tests were critical for
identifying and removing augmentations that proved distracting
or overwhelming, such as visualizing raw source-target word
alignments rather than just source coverage. We also tuned the
translation engine to provide updates within 300 ms, as higher
latencies led to user reports of a “sluggish” interface in which
updates were out of sync with the user’s translation process.
To assess our approach, we conducted a series of experiments

involving professional translators for a number of target lan-
guages (e.g., Arabic, French, and German), translating texts from
a variety of genres. As a baseline, we first compared purely
manual translation with postediting (23), in which a human
translator is given MT output and can revise (or delete) it as they
see fit. Using ratings by human judges, we found that postediting
led to reduced time and improved quality over purely manual
translation, suggesting that translation technology has advanced
sufficiently to provide value for high-quality translation tasks.
We then conducted a study comparing postediting and PTM.

Interactive translation with PTM resulted in higher-quality
translations (according to the BLEU+1 metric), with >99% of
characters being entered via interactive aids (21). PTM was
slightly slower than postediting, but this effect diminished over
time as users became more accustomed to the new interface.
Moreover, retuning the MT engine on the more fine-grained
interactive PTM inputs led to significantly greater improve-
ments than with postediting, resulting in fine-grained corrections
to MT output (22). This research on PTM is now being com-
mercialized by Lilt, a company providing adaptive language-
translation services.
Despite these benefits, some study participants reported (not

unlike Voyager) that the inclusion of automation affected their
behavior and perceived agency. One participant felt that with
MT support, “the translator is less susceptible to be creative,”
while another stated that MT “distracts from my own original
translation process by putting words in [my] head.” Indeed, we
observed that translators using MT-powered aids produced more
consistent translations, primed by MT output. These obser-
vations suggest trade-offs to examine in future evaluations:

Individual translators may experience a mix of productive assis-
tance and “short-circuiting” of thought; meanwhile, customers
who hire a team of translators might prefer having the more
consistent results.

Designing Shared Representations
The above projects investigate ways of integrating agency and
automation by incorporating predictive models and feedback
into interactive applications, in each case showing benefits in
terms of user productivity, quality of outcome, and/or enhanced
learning. By leveraging shared representations that can be
authored and edited—ranging from simple text to specifications
of data transformations or visualizations—people and algorithms
can both contribute to, and adaptively learn from, solutions to
shared problems. This approach sits in opposition to a perspec-
tive of pure automation, suggesting one avenue by which AI
methods can be applied to helpfully reshape, rather than replace,
human labor.
For each example application, careful interface design and

evaluation was required to craft an effective “collaborative” in-
terface. That said, the notion of collaboration used here differs
in critical ways from the one common to social software for
people, such as shared document editing. To safeguard human
agency, the interaction models in Wrangler, Voyager, and PTM
are fundamentally asymmetric: Automated methods suggest
possible actions, which are then displayed for review and revision
by the user, who remains the ultimate decision maker.
The example applications above also illustrate different points

in the design space of shared representations. In Wrangler and
Voyager, the shared representation involves three components:
(i) a DSL that represents potential user actions, (ii) a predictive
model that performs search and recommendation over the space
of DSL statements, and (iii) an interface that presents language
statements and recommendations in an interactive graphical
form. A DSL provides a shared medium in which both people
and machines reason about and formulate actions. These un-
derlying DSLs (Wrangle and Vega-Lite, respectively) were
manually designed by experts with extensive domain knowledge,
with ML techniques subsequently applied to provide recom-
mendations. The graphical interface maps the formal language
to a more usable form via visual representations of DSL statements

Fig. 5. The PTM tool for natural language translation. The interface shows the document context, with source inputs (here, French) interleaved with
suggested target translations (here, English). Target translations are seeded via MT, but are user editable. The current focus sentence is indicated by a blue
rectangle, with translated source words shaded. As a translator types, the machine suggests update in real time to reflect the changed context. Translator
edits are also used to tune the translation engine to provide in situ domain adaptation.

1848 | www.pnas.org/cgi/doi/10.1073/pnas.1807184115 Heer

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

S
ep

te
m

be
r 

8,
 2

02
1 

https://www.pnas.org/cgi/doi/10.1073/pnas.1807184115
Andy Matuschak

Andy Matuschak



and recommendations, which are then amenable to user review
and action.
PTM, on the other hand, does not expose an underlying task

representation. Users directly interact with text and may accept
or modify spans suggested by the MT engine. Of course, both the
human translator and MT engine possess rich internal representa-
tions: The translator brings their language experience and world
knowledge, while the MT system comprises a model trained on a
large corpus of language data. However, exposing an internal rep-
resentation such as a parse tree seems unlikely to aid translation
work if human translators do not consciously reason in those terms.
In addition, while the original PTM system used a traditional beam
search algorithm, later versions were revised to better-performing
neural network approaches. Due to the text-only shared represen-
tation, a complete overhaul of the MT model did not require
substantial changes to the interactive aids. Determining the right
level of discourse for a shared representation—from explicit
task models to direct editing of output—critically depends on
the task, data, and user mental models involved.
In addition to demonstrating real-world utility, commercial

and open-source use has led us to expand both the automated
and interactive aspects of these systems. ML improvements have
led to increased prediction accuracy while also expanding cov-
erage to more tasks, such as inference of input data types in
Wrangler. At the same time, updated interfaces for graphical
review, authoring, and revision have proven critical to improve
usability and enhance the interactive guide–decide loop. In
general, we have observed that users want more control, not less,
requiring us to develop more fine-grained interactive specifica-
tion tools. Overall, we have found that neither automated sug-
gestions nor direct manipulation play a strictly dominant role.
Rather, we have observed that a fluent interleaving of both
modalities can enable more productive, yet flexible, work.

Future Prospects
How might we better construct and deploy systems that integrate
agency and automation via shared representations? One open
research area is to develop design tools that aid the creation of
effective AI-infused interactive systems. While the case studies
above are suggestive, each involves a bespoke effort backed by
multiple years of research and development. Future user-
interface toolkits might change the cost structure of prototyp-
ing, development, and evaluation by supporting not only input
and output, but by including task-modeling support combined
with inference, learning, monitoring, and model-management
services. While the examples above focus primarily on single-user
scenarios, social systems involving teams of people as well as AI
algorithms are an important concern. Another critical compo-
nent of such future tools is ongoing monitoring and model
analysis: As interactive systems are imbued with AI and ML
techniques, designers, developers, and potentially even end users
will require methods with which to inspect models, perform error
analyses, and track how models change over time.
The shared representations in the case studies above, which

range from text-editing interfaces to DSLs, were engineered by
people. It is possible that shared representations might also be
learned—whether in whole or in part—by using data-driven
methods. For example, techniques such as variational auto-
encoders, generative adversarial networks, and vector-space

word embeddings involve the construction of latent spaces of
reduced dimensionality from input data, often in an (indirect)
attempt to capture useful “semantic” properties of the data.
Examples include “semantic arithmetic” in word vector spaces
(24) (e.g., finding vector offsets that capture pluralization or
changes of gender) and capturing typographic design principles
(25) (e.g., attribute vectors that capture the notion of a bold
typeface, including subtle changes such as preserving internal
letter space and baseline while increasing stroke width). Scien-
tific research in fields as diverse as astronomy (26) and genomics
(27) have used similar approaches for unsupervised feature
learning to leverage an abundance of unlabeled data, potentially
capturing novel scientific insights. New approaches might better
map such spaces, identify useful representations contained
therein (28), and also potentially constrain them to capture
known features of interest. A related issue is to properly account
for and adjust for bias due to limited or unrepresentative input
data. In short, how might people not only work with algorithms
via a priori shared representations, but construct new represen-
tations in a data-driven manner?
Going forward, a critical question is how to evaluate systems

across varied levels of agency and automation, with the ultimate
goal of building up a corresponding engineering discipline. For a
given application, might we predict an appropriate balance of
agency vs. automation based on the nature of the task, such as
the presence of fixed, shifting, or open-ended objectives? In what
cases will we wish to give AI methods greater discretion of action
than in the examples considered here, and how will these
methods interpretably justify those actions? The case studies
above include evaluations involving task time and quality mea-
sures, as well as more qualitative concerns regarding partici-
pants’ perceived autonomy and creativity of action. These studies
demonstrate people’s preference to see themselves as the initi-
ators of critical actions and to avoid interruptions as they for-
mulate their intent. By what methods should we further assess
and compare such systems, not only at the point of initial design,
but throughout the deployment life cycle?
While some evaluation criteria will necessarily be problem-

specific, some critical dimensions will be shared across applica-
tions, particularly those relevant to human experience and
learning. For example, how might shared representations help
promote interpretability, learning, and skill acquisition by more
novice users, using AI methods to level up—rather than deskill—
workers? To what degree will such systems promote behavior
characterized by user control vs. more passive acceptance of al-
gorithmic recommendations? Can appropriate designs prompt
more critical engagement in the face of automated support? In
some cases, should we accept having the computer “think for us,”
if it frees us to engage in higher-level reasoning or more creative
practice? The examples above suggest that these questions do
not lend themselves to simple formulations, but rather a space of
design trade-offs ripe for further study.
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